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INTRODUCTION
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Anomaly-based intrusion detection

■ Cyber security is challenged:

– Vast amount of network traffic

– Evolution and sophistication of malicious activities

– Signature-based IDS can’t keep up with the new attacks increasing rate

■ Anomaly-based Intrusion Detection Systems

– Rely heavily on machine learning

– Classify data based on normal or deviant behaviour

– Anomalies can be caused by malicious actors, or performance-related

■ Solution → machine learning classification
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Machine Learning methods

■ Semi-supervised:

– Use mechanisms 
like AE

– Use labelled 
and/or unlabelled 
training data

■ Problems:

– Not good enough 
performance and 
no validation

– Complexity of 
algorithms
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■ Supervised:

– Best accuracy

– Feature selection

– Most reliable

– Measurable 
performance

■ Problems:

– Label creation

– Balanced 
representation of 
all classes

■ Unsupervised:

– Newest methods

– Can use real 

traffic for training 

(unlabelled data)

■ Problems:

– Not good enough  

performance and 

no validation

– Complexity of 

algorithms



Challenges of network security and 
anomaly detection

■ Rapid development of networks and attacks today

■ Reliance of our society on the Internet (more data generated every year)

■ IoT, lower level devices connected to each other handling sensitive data

■ Unavailability of open network datasets, especially recent ones

■ Incompetence of unsupervised learning methods
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Objectives

■ Analyse the NSL-KDD dataset as a benchmark dataset for intrusion detection

■ Compare three scenarios:

– Multiclass classification (40 labels) – for each different attack

– Grouped classification (5 labels) – attacks are grouped together by kind

– Binary classification (2 labels) – normal and abnormal traffic classification

■ Pre-process the dataset so that it is usable by the models

■ Develop and compare 5 common supervised machine learning classification 

algorithms

■ Evaluate results and compare to research
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PRE-PROCESSING OF THE 
NSL-KDD DATASET 
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Why the NSL-KDD

■ A dataset of network traffic records 

■ Created in 2009, curated from KDDCup99 (1999)

■ Pros:

– One of the few publicly available datasets

– Already labelled (necessary for supervised learning)

– Rich in features

– Still used in research 

■ Cons:

– Outdated (doesn’t contain recent attacks)

– Synthetic dataset
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Characteristics

■ Consists of .csv files:

– 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + with 125,973 data entries 

– 𝐾𝐷𝐷𝑇𝑒𝑠𝑡 + with 22,544 data entries → 17.9% 𝑟𝑎𝑡𝑒

■ Difficulty levels: 21

– 49.66% of training set and 47.44% of test set are 21/21 level

■ 43 columns: 1-41 → features, 42 → label, 43 → difficulty level

■ Subsets: KDDTest-21, KDDTraini+_20Percent

– Their records are all included in the bigger datasets
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Labels (traffic type)
Class R2L DoS U2R Probe

Attacks

ftp_write

guess_passwd

httptunnel

imap

multihop

named

phf

sendmail

snmpgetattack

spy

snmpguess

warezmaster

warezclient

xlock

xsnoop

apache2

back

land

neptune

mailbomb

pod

processtable

smurf

teardrop

udpstorm

worm

buffer_overflow

loadmodule

perl

ps

rootkit

sqlattack

xterm

ipsweep

mscan

nmap

portsweep

saint

satan

Total 15 11 7 6

■ 39 attacks + normal traffic

■ Groups of attacks:

– Denial of Service (DoS)

– Remote to Local (R2L)

– User to Root (U2R)

– Probe
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Distribution of labels by class and subset

Type of traffic # in training set % in training set # in test set % in test set

normal 67343 53.46% 9711 43.08%

DoS 45927 36.46% 7460 33.09%

Probe 11656 9.25% 2885 12.79%

R2L 995 0.79% 2421 10.74%

U2R 52 0.04% 67 0.30%

■ Skewed (but realistic) distribution towards normal and DoS traffic

■ Differences:

– In test set, normal traffic is not more than half of the total

– Boost in R2L attacks

– In training set there are 23 different labels, in test set there are 38 labels

■ Important to test the model with attacks not encountered during training
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Features

■ Col.1: Duration of connection

■ Col.2: Protocol (TCP, UDP, ICMP)

■ Col.3: Services (http, DNS request, email…)

■ Col. 4: Flags

■ Col.5-9: Header info

■ Col. 10-22: Connection-based info (from payload)

■ Col. 23-31: Time-based info (traffic analysed over a 2 sec. window)

■ Col. 32-42: Host-based info (over multiple connections)
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Pre-processing Steps
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DATAFRAME 
CREATION

Import .csv files

Create separate 
instances 

(multiclass, binary, 
grouped)

DATA CLEANING

Clean out 
empty/wrong 

cells

Separate last 
column

ONE-HOT 
ENCODING

Categorical 
values need to 
be numerical

X AND Y 
COMPONENTS

Separate 
features from 

labels

ALIGNMENT

Training and 
test sets need 
to be uniform

SCALING

Minimize bias

All variables in 
0-1 range

INPUT TO 
MODELS



Dataframes creation

■ Import the .csv files 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + and 𝐾𝐷𝐷𝑇𝑒𝑠𝑡 + (pandas 

library)

– Dataframe type variables with sizes 125,973 × 43 and 

22,544 × 43 respectively

■ Create 2 more copies and format the labels

– Binary: rename all attacks, so that there are only 

“normal” and “abnormal” labels

– 4-class grouping: rename attacks according to their 

attack class, labels are “normal”, “DoS”, “Probe”, “R2L” 

and “U2R”
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Data Cleaning

■ Confirm that there are no missing, wrong format, out-of-bounds and redundant 

values

– All records are unique and with all features

■ Separate last column (difficulty level)

– No real information for the model, only for us to compare training and test set

■ Drop col. 20 (number of outbound commands in an ftp session)

– All 0𝑠, became 𝑁𝑎𝑁 during correlation calculations
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One-hot Encoding

■ Turn the categorical values into numerical

– Counted in correlation calculations

– Compatible for the model

■ Create dummy variables: one label is turned into a 𝑁-dimensional vector

– N is the number of all different values the categorical variable has

e.g. Column 2: 𝑇𝐶𝑃, 𝑈𝐷𝑃, 𝐼𝐶𝑀𝑃 → 1,0,0 , 0,1,0 , 0,0,1

– Each record has all 0𝑠, except in one dimension that it has 1

– .get_dummies method: move categorical values at the end and expand them into 

vectors
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Labels of 

columns 

before 

Labels of columns in multiclass training 

dataframe, after one-hot encoding

Labels of columns in binary 

classification training dataframe, after 

one-hot encoding

Labels of columns in 4-class 

classification training dataframe, after 

one-hot encoding
[0, 1,

2, 3,

4, 5,

6, 7, 

8, 9, 

10, 11, 12, 

13, 14, 15, 

16, 17, 18, 

20, 21, 22, 

23, 24, 25, 

26, 27, 28, 

29, 30, 31, 

32, 33, 34, 

35, 36, 37, 

38, 39, 40, 

41]

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 

35, 36, 37, 38, 39, 40, '1_icmp', '1_tcp', '1_udp', '2_IRC', 

'2_X11', '2_Z39_50', '2_aol', '2_auth', '2_bgp', '2_courier', 

'2_csnet_ns', '2_ctf', '2_daytime', '2_discard', '2_domain', 

'2_domain_u', '2_echo', '2_eco_i', '2_ecr_i', '2_efs', 

'2_exec', '2_finger', '2_ftp', '2_ftp_data', '2_gopher', 

'2_harvest', '2_hostnames', '2_http', '2_http_2784', 

'2_http_443', '2_http_8001', '2_imap4', '2_iso_tsap', 

'2_klogin', '2_kshell', '2_ldap', '2_link', '2_login', '2_mtp', 

'2_name', '2_netbios_dgm', '2_netbios_ns', 

'2_netbios_ssn', '2_netstat', '2_nnsp', '2_nntp', '2_ntp_u', 

'2_other', '2_pm_dump', '2_pop_2', '2_pop_3', '2_printer', 

'2_private', '2_red_i', '2_remote_job', '2_rje', '2_shell', 

'2_smtp', '2_sql_net', '2_ssh', '2_sunrpc', '2_supdup', 

'2_systat', '2_telnet', '2_tftp_u', '2_tim_i', '2_time', 

'2_urh_i', '2_urp_i', '2_uucp', '2_uucp_path', '2_vmnet', 

'2_whois', '3_OTH', '3_REJ', '3_RSTO', '3_RSTOS0', 

'3_RSTR', '3_S0', '3_S1', '3_S2', '3_S3', '3_SF', '3_SH',

'41_back', '41_buffer_overflow', '41_ftp_write', 

'41_guess_passwd', '41_imap', '41_ipsweep', '41_land', 

'41_loadmodule', '41_multihop', '41_neptune', '41_nmap', 

'41_normal', '41_perl', '41_phf', '41_pod', '41_portsweep', 

'41_rootkit', '41_satan', '41_smurf', '41_spy', 

'41_teardrop', '41_warezclient', '41_warezmaster']

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 

'1_icmp', '1_tcp', '1_udp', '2_IRC', '2_X11', 

'2_Z39_50', '2_aol', '2_auth', '2_bgp', 

'2_courier', '2_csnet_ns', '2_ctf', '2_daytime', 

'2_discard', '2_domain', '2_domain_u', 

'2_echo', '2_eco_i', '2_ecr_i', '2_efs', '2_exec', 

'2_finger', '2_ftp', '2_ftp_data', '2_gopher', 

'2_harvest', '2_hostnames', '2_http', 

'2_http_2784', '2_http_443', '2_http_8001', 

'2_imap4', '2_iso_tsap', '2_klogin', '2_kshell', 

'2_ldap', '2_link', '2_login', '2_mtp', '2_name', 

'2_netbios_dgm', '2_netbios_ns', 

'2_netbios_ssn', '2_netstat', '2_nnsp', '2_nntp', 

'2_ntp_u', '2_other', '2_pm_dump', '2_pop_2', 

'2_pop_3', '2_printer', '2_private', '2_red_i', 

'2_remote_job', '2_rje', '2_shell', '2_smtp', 

'2_sql_net', '2_ssh', '2_sunrpc', '2_supdup', 

'2_systat', '2_telnet', '2_tftp_u', '2_tim_i', 

'2_time', '2_urh_i', '2_urp_i', '2_uucp', 

'2_uucp_path', '2_vmnet', '2_whois', '3_OTH', 

'3_REJ', '3_RSTO', '3_RSTOS0', '3_RSTR', 

'3_S0', '3_S1', '3_S2', '3_S3', '3_SF', '3_SH', 

'41_abnormal', '41_normal']

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 

'1_icmp', '1_tcp', '1_udp', '2_IRC', '2_X11', 

'2_Z39_50', '2_aol', '2_auth', '2_bgp', '2_courier', 

'2_csnet_ns', '2_ctf', '2_daytime', '2_discard', 

'2_domain', '2_domain_u', '2_echo', '2_eco_i', 

'2_ecr_i', '2_efs', '2_exec', '2_finger', '2_ftp', 

'2_ftp_data', '2_gopher', '2_harvest', 

'2_hostnames', '2_http', '2_http_2784', 

'2_http_443', '2_http_8001', '2_imap4', 

'2_iso_tsap', '2_klogin', '2_kshell', '2_ldap', 

'2_link', '2_login', '2_mtp', '2_name', 

'2_netbios_dgm', '2_netbios_ns', 

'2_netbios_ssn', '2_netstat', '2_nnsp', '2_nntp', 

'2_ntp_u', '2_other', '2_pm_dump', '2_pop_2', 

'2_pop_3', '2_printer', '2_private', '2_red_i', 

'2_remote_job', '2_rje', '2_shell', '2_smtp', 

'2_sql_net', '2_ssh', '2_sunrpc', '2_supdup', 

'2_systat', '2_telnet', '2_tftp_u', '2_tim_i', 

'2_time', '2_urh_i', '2_urp_i', '2_uucp', 

'2_uucp_path', '2_vmnet', '2_whois', '3_OTH', 

'3_REJ', '3_RSTO', '3_RSTOS0', '3_RSTR', '3_S0', 

'3_S1', '3_S2', '3_S3', '3_SF', '3_SH', '41_DoS', 

'41_Probe', '41_R2L', '41_U2R', '41_normal']

In total: 42 In total: 144 In total: 123 In total: 126
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Correlation

■ Find the pair-wise relationships 

between all (numerical) features

– Using the .corr() pandas function

■ Range: −1,+1 :

– 𝑐 → −1: inversely proportional 

values

– 𝑐 → 1: proportional values

– 𝑐 → 0: irrelevant values
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X and Y components – Alignment
Standard scaling
■ Split the dataframes into features 𝑋 (col. 1- 41) and labels 𝑌 (col. 42)

– One-hot encode the 𝑋 component, leave 𝑌 as labels (output)

■ Alignment: training 𝑋 component is 125973 × 121, test 𝑋 is 22544 × 115

– Length difference doesn’t matter, but features dimensions need to be the 

same

– Fill the empty values from extra columns with 0 in the right place

■ Standard scaler: 𝑥′ =
𝑥−𝜇

𝑠
(normal distribution)

𝑥′: new scaled value, 𝑥: original data value, 𝜇: mean of training samples, 𝑠: standard deviation

■ Two steps:

– Fitting: computes mean and standard deviation of the data → training set only

– Transformation: perform the scaling on the data → both sets

20



EVALUATION AND 
RESULTS
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Machine learning classification models

■ Logistic Regression

– Use the sigmoid function to test each class at a time 

■ Decision Tree

– Create subsets (classes) based on questions posed on the dataset

■ K – Nearest Neighbours

– Classify with no hypotheses or conditions

■ Gaussian Naïve Bayes

– Conditional probability model based on Bayes theorem

■ Multi – Layer Perceptron

– Basic ANN architecture
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Deviant performances

■ Training and test sets are very different

– Distribution and types of labels

– Difficulty levels

– Services and flags (highly correlated with many other features and with output)

■ Check for overfitting:

– Case A: training set 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + and test set (validation) 𝐾𝐷𝐷𝑇𝑒𝑠𝑡 +

– Case B: training and test set are part of 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + (using .train_test_split)
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Accuracy

■ Overall ability of the model to classify correctly over all of the values

■ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑦,ො𝑦 =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
σ𝑖=0

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1 1 ෝ𝑦𝑖 = 𝑦𝑖

– ෝ𝑦𝑖: predicted output, 𝑦𝑖: real value

■ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
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Case A (separate training and test sets)

CLASSIFICATION 

ALGORITHM

CLASS 

SCENARIO

TRAINING 

SET

TEST 

SET

C
A

S
E

 A
: 

u
s
in

g
 t

h
e

 K
D

D
Tr

a
in

+
 a

n
d

 K
D

D
Te

s
t+

 

a
s
 t

ra
in

in
g
 a

n
d

 t
e

s
t 

s
e

ts

LOGISTIC 

REGRESSION

multi 0,99 0,70

binary 0,97 0,75

4-class 0,99 0,76

DECISION TREE

multi 1,00 0,71

binary 1,00 0,79

4-class 1,00 0,76

K NEAREST 

NEIBOURS

multi 0,99 0,72

binary 0,99 0,77

4-class 0,99 0,74

GAUSSIAN 

NAÏVE BAYES

multi 0,77 0,53

binary 0,84 0,55

4-class 0,65 0,42

MULTI LAYER 

PERCEPTRON

multi 1,00 0,72

binary 1,00 0,79

4-class 1,00 0,77
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Case B (split training and validation set)

CLASSIFICATION 

ALGORITHM

CLASS 

SCENARIO

TRAINING 

SET

TEST 

SET

C
A

S
E

 B
: 
s
p

li
tt

in
g
 t

h
e

 K
D

D
Tr

a
in

+
 i
n

 t
ra

in
in

g
 

a
n

d
 t

e
s
t/

va
li
d

a
ti

o
n

 s
u

b
s
e

ts

LOGISTIC 

REGRESSION

multi 0,99 0,99

binary 0,97 0,97

4-class 0,99 0,99

DECISION TREE

multi 1,00 1,00

binary 1,00 1,00

4-class 1,00 1,00

K NEAREST 

NEIBOURS

multi 0,99 0,99

binary 0,99 0,99

4-class 0,99 0,99

GAUSSIAN 

NAÏVE BAYES

multi 0,76 0,76

binary 0,85 0,85

4-class 0,65 0,65

MULTI LAYER 

PERCEPTRON

multi 1,00 1,00

binary 1,00 1,00

4-class 1,00 1,00
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Evaluation

■ Case B is not valuable or useful

– Traffic data won’t be so close to training data in real life

– Most models use the same dataset split for training and validation

■ Classification reports

– Detailed analysis of all models and classifications performance label by label

– All metrics → 1 for frequently encountered outputs and → 0 for scarce outputs
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Evaluation of models

■ Less classes ↔ higher accuracy

■ Highest: DT+MLP binary classification 79%

■ Lowest: LR+DT multiclass classification 70%

■ GNB 53%, 55%, 42% :

– No Gaussian distribution of the data

– Many highly correlated features 
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Relevant research (2018-2022) 

■ [1], [2]: combined 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + and 𝐾𝐷𝐷𝑇𝑒𝑠𝑡 + into one and split it (similar to case B)

– accuracy 99 − 99,6%

– DT, RF, MLP algorithms

■ [3]: with PCA, reduced to 6 features

– All features → accuracy 74 − 79%

– Reduced → 71 − 75%

– DT, DNN, PCA+DNN algorithms
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Relevant research (2018-2022) 

■ [4]: input layer, multiple CNN, BLSTM, attention layer

– Accuracy 84,2%

– With DT, MLP, RF, accuracy 72 − 78%

■ [5]: AE (115>50 features), sparse AE (50>10), LR (10>2) 

– Binary classification only

– Accuracy 87,2%

■ [6]: Best of performance of all with LSTM, DCNN, Denoising and Contractive AE

– Accuracy 89% 𝐿𝑆𝑇𝑀 , 81 − 85% 𝐴𝐸

– RF, DR, k-NN, MLP algorithms → accuracy 74 − 82%
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DISCUSSION – FUTURE 
WORK
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This Project

■ Basic (and outdated) algorithms gave results not far behind state-of-the-art

■ Utilizes one of the most popular datasets available

■ Compares five common classification methods

■ Compares different classification scenarios

■ Open to upgrades in both data and algorithms

■ Can be comparable with recent research

– Still use NSL-KDD as benchmark
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Future work

■ Use the NSL-KDD as an unsupervised dataset, and be able to validate results

– Attention mechanisms, AE, clustering methods

■ More advanced supervised methods (DNN, CNN, LSTM)

■ Data-centric upgrade: use real data with unsupervised learning

– With data from a secure environment, AEs would perform very well

– NSL-KDD can be used for validation of the unsupervised models

– More advanced project: feature extraction/selection, data cleaning, unsupervised 

methods only
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Resources

■ Python Jupyter notebook

■ Libraries:

– Pandas

– Numpy

– Sklearn

■ Linear_model, tree, neighbors, naive_bayes, neural_network

■ Preprocessing, metrics, model_selection

– Matplotlib

– Seaborn
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