
A SUPERVISED MACHINE LEARNING
FRAMEWORK FOR ANOMALY-BASED
INTRUSION DETECTION

Anastasia Chaloulakou (10024)

SUPERVISORS: K. SIOZIOS, M. DASYGENIS

MASTER THESIS FOR THE PPS (MS) IN ELECTRONIC PHYSICS (RADIOELECTROLOGY)

Outline

■ Introduction – general idea

■ Pre-processing of NSL-KDD dataset

– Dataset features

– Pre-processing steps

■ Evaluation and results

– Machine learning methods developed

– Comparison of performances

■ Comparison to state-of-the-art and discussion

2

INTRODUCTION

3

Anomaly-based intrusion detection

■ Cyber security is challenged:

– Vast amount of network traffic

– Evolution and sophistication of malicious activities

– Signature-based IDS can’t keep up with the new attacks increasing rate

■ Anomaly-based Intrusion Detection Systems

– Rely heavily on machine learning

– Classify data based on normal or deviant behaviour

– Anomalies can be caused by malicious actors, or performance-related

■ Solution → machine learning classification

4

Machine Learning methods

■ Semi-supervised:

– Use mechanisms
like AE

– Use labelled
and/or unlabelled
training data

■ Problems:

– Not good enough
performance and
no validation

– Complexity of
algorithms

5

■ Supervised:

– Best accuracy

– Feature selection

– Most reliable

– Measurable
performance

■ Problems:

– Label creation

– Balanced
representation of
all classes

■ Unsupervised:

– Newest methods

– Can use real

traffic for training

(unlabelled data)

■ Problems:

– Not good enough

performance and

no validation

– Complexity of

algorithms

Challenges of network security and
anomaly detection

■ Rapid development of networks and attacks today

■ Reliance of our society on the Internet (more data generated every year)

■ IoT, lower level devices connected to each other handling sensitive data

■ Unavailability of open network datasets, especially recent ones

■ Incompetence of unsupervised learning methods

6

Objectives

■ Analyse the NSL-KDD dataset as a benchmark dataset for intrusion detection

■ Compare three scenarios:

– Multiclass classification (40 labels) – for each different attack

– Grouped classification (5 labels) – attacks are grouped together by kind

– Binary classification (2 labels) – normal and abnormal traffic classification

■ Pre-process the dataset so that it is usable by the models

■ Develop and compare 5 common supervised machine learning classification

algorithms

■ Evaluate results and compare to research

7

PRE-PROCESSING OF THE
NSL-KDD DATASET

8

Why the NSL-KDD

■ A dataset of network traffic records

■ Created in 2009, curated from KDDCup99 (1999)

■ Pros:

– One of the few publicly available datasets

– Already labelled (necessary for supervised learning)

– Rich in features

– Still used in research

■ Cons:

– Outdated (doesn’t contain recent attacks)

– Synthetic dataset

9

Characteristics

■ Consists of .csv files:

– 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + with 125,973 data entries

– 𝐾𝐷𝐷𝑇𝑒𝑠𝑡 + with 22,544 data entries → 17.9% 𝑟𝑎𝑡𝑒

■ Difficulty levels: 21

– 49.66% of training set and 47.44% of test set are 21/21 level

■ 43 columns: 1-41 → features, 42 → label, 43 → difficulty level

■ Subsets: KDDTest-21, KDDTraini+_20Percent

– Their records are all included in the bigger datasets

10

Labels (traffic type)
Class R2L DoS U2R Probe

Attacks

ftp_write

guess_passwd

httptunnel

imap

multihop

named

phf

sendmail

snmpgetattack

spy

snmpguess

warezmaster

warezclient

xlock

xsnoop

apache2

back

land

neptune

mailbomb

pod

processtable

smurf

teardrop

udpstorm

worm

buffer_overflow

loadmodule

perl

ps

rootkit

sqlattack

xterm

ipsweep

mscan

nmap

portsweep

saint

satan

Total 15 11 7 6

■ 39 attacks + normal traffic

■ Groups of attacks:

– Denial of Service (DoS)

– Remote to Local (R2L)

– User to Root (U2R)

– Probe

11

Distribution of labels by class and subset

Type of traffic # in training set % in training set # in test set % in test set

normal 67343 53.46% 9711 43.08%

DoS 45927 36.46% 7460 33.09%

Probe 11656 9.25% 2885 12.79%

R2L 995 0.79% 2421 10.74%

U2R 52 0.04% 67 0.30%

■ Skewed (but realistic) distribution towards normal and DoS traffic

■ Differences:

– In test set, normal traffic is not more than half of the total

– Boost in R2L attacks

– In training set there are 23 different labels, in test set there are 38 labels

■ Important to test the model with attacks not encountered during training

12

Features

■ Col.1: Duration of connection

■ Col.2: Protocol (TCP, UDP, ICMP)

■ Col.3: Services (http, DNS request, email…)

■ Col. 4: Flags

■ Col.5-9: Header info

■ Col. 10-22: Connection-based info (from payload)

■ Col. 23-31: Time-based info (traffic analysed over a 2 sec. window)

■ Col. 32-42: Host-based info (over multiple connections)

13

Pre-processing Steps

14

DATAFRAME
CREATION

Import .csv files

Create separate
instances

(multiclass, binary,
grouped)

DATA CLEANING

Clean out
empty/wrong

cells

Separate last
column

ONE-HOT
ENCODING

Categorical
values need to
be numerical

X AND Y
COMPONENTS

Separate
features from

labels

ALIGNMENT

Training and
test sets need
to be uniform

SCALING

Minimize bias

All variables in
0-1 range

INPUT TO
MODELS

Dataframes creation

■ Import the .csv files 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + and 𝐾𝐷𝐷𝑇𝑒𝑠𝑡 + (pandas

library)

– Dataframe type variables with sizes 125,973 × 43 and

22,544 × 43 respectively

■ Create 2 more copies and format the labels

– Binary: rename all attacks, so that there are only

“normal” and “abnormal” labels

– 4-class grouping: rename attacks according to their

attack class, labels are “normal”, “DoS”, “Probe”, “R2L”

and “U2R”

15

Data Cleaning

■ Confirm that there are no missing, wrong format, out-of-bounds and redundant

values

– All records are unique and with all features

■ Separate last column (difficulty level)

– No real information for the model, only for us to compare training and test set

■ Drop col. 20 (number of outbound commands in an ftp session)

– All 0𝑠, became 𝑁𝑎𝑁 during correlation calculations

16

One-hot Encoding

■ Turn the categorical values into numerical

– Counted in correlation calculations

– Compatible for the model

■ Create dummy variables: one label is turned into a 𝑁-dimensional vector

– N is the number of all different values the categorical variable has

e.g. Column 2: 𝑇𝐶𝑃, 𝑈𝐷𝑃, 𝐼𝐶𝑀𝑃 → 1,0,0 , 0,1,0 , 0,0,1

– Each record has all 0𝑠, except in one dimension that it has 1

– .get_dummies method: move categorical values at the end and expand them into

vectors

17

Labels of

columns

before

Labels of columns in multiclass training

dataframe, after one-hot encoding

Labels of columns in binary

classification training dataframe, after

one-hot encoding

Labels of columns in 4-class

classification training dataframe, after

one-hot encoding
[0, 1,

2, 3,

4, 5,

6, 7,

8, 9,

10, 11, 12,

13, 14, 15,

16, 17, 18,

20, 21, 22,

23, 24, 25,

26, 27, 28,

29, 30, 31,

32, 33, 34,

35, 36, 37,

38, 39, 40,

41]

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, '1_icmp', '1_tcp', '1_udp', '2_IRC',

'2_X11', '2_Z39_50', '2_aol', '2_auth', '2_bgp', '2_courier',

'2_csnet_ns', '2_ctf', '2_daytime', '2_discard', '2_domain',

'2_domain_u', '2_echo', '2_eco_i', '2_ecr_i', '2_efs',

'2_exec', '2_finger', '2_ftp', '2_ftp_data', '2_gopher',

'2_harvest', '2_hostnames', '2_http', '2_http_2784',

'2_http_443', '2_http_8001', '2_imap4', '2_iso_tsap',

'2_klogin', '2_kshell', '2_ldap', '2_link', '2_login', '2_mtp',

'2_name', '2_netbios_dgm', '2_netbios_ns',

'2_netbios_ssn', '2_netstat', '2_nnsp', '2_nntp', '2_ntp_u',

'2_other', '2_pm_dump', '2_pop_2', '2_pop_3', '2_printer',

'2_private', '2_red_i', '2_remote_job', '2_rje', '2_shell',

'2_smtp', '2_sql_net', '2_ssh', '2_sunrpc', '2_supdup',

'2_systat', '2_telnet', '2_tftp_u', '2_tim_i', '2_time',

'2_urh_i', '2_urp_i', '2_uucp', '2_uucp_path', '2_vmnet',

'2_whois', '3_OTH', '3_REJ', '3_RSTO', '3_RSTOS0',

'3_RSTR', '3_S0', '3_S1', '3_S2', '3_S3', '3_SF', '3_SH',

'41_back', '41_buffer_overflow', '41_ftp_write',

'41_guess_passwd', '41_imap', '41_ipsweep', '41_land',

'41_loadmodule', '41_multihop', '41_neptune', '41_nmap',

'41_normal', '41_perl', '41_phf', '41_pod', '41_portsweep',

'41_rootkit', '41_satan', '41_smurf', '41_spy',

'41_teardrop', '41_warezclient', '41_warezmaster']

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

'1_icmp', '1_tcp', '1_udp', '2_IRC', '2_X11',

'2_Z39_50', '2_aol', '2_auth', '2_bgp',

'2_courier', '2_csnet_ns', '2_ctf', '2_daytime',

'2_discard', '2_domain', '2_domain_u',

'2_echo', '2_eco_i', '2_ecr_i', '2_efs', '2_exec',

'2_finger', '2_ftp', '2_ftp_data', '2_gopher',

'2_harvest', '2_hostnames', '2_http',

'2_http_2784', '2_http_443', '2_http_8001',

'2_imap4', '2_iso_tsap', '2_klogin', '2_kshell',

'2_ldap', '2_link', '2_login', '2_mtp', '2_name',

'2_netbios_dgm', '2_netbios_ns',

'2_netbios_ssn', '2_netstat', '2_nnsp', '2_nntp',

'2_ntp_u', '2_other', '2_pm_dump', '2_pop_2',

'2_pop_3', '2_printer', '2_private', '2_red_i',

'2_remote_job', '2_rje', '2_shell', '2_smtp',

'2_sql_net', '2_ssh', '2_sunrpc', '2_supdup',

'2_systat', '2_telnet', '2_tftp_u', '2_tim_i',

'2_time', '2_urh_i', '2_urp_i', '2_uucp',

'2_uucp_path', '2_vmnet', '2_whois', '3_OTH',

'3_REJ', '3_RSTO', '3_RSTOS0', '3_RSTR',

'3_S0', '3_S1', '3_S2', '3_S3', '3_SF', '3_SH',

'41_abnormal', '41_normal']

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

'1_icmp', '1_tcp', '1_udp', '2_IRC', '2_X11',

'2_Z39_50', '2_aol', '2_auth', '2_bgp', '2_courier',

'2_csnet_ns', '2_ctf', '2_daytime', '2_discard',

'2_domain', '2_domain_u', '2_echo', '2_eco_i',

'2_ecr_i', '2_efs', '2_exec', '2_finger', '2_ftp',

'2_ftp_data', '2_gopher', '2_harvest',

'2_hostnames', '2_http', '2_http_2784',

'2_http_443', '2_http_8001', '2_imap4',

'2_iso_tsap', '2_klogin', '2_kshell', '2_ldap',

'2_link', '2_login', '2_mtp', '2_name',

'2_netbios_dgm', '2_netbios_ns',

'2_netbios_ssn', '2_netstat', '2_nnsp', '2_nntp',

'2_ntp_u', '2_other', '2_pm_dump', '2_pop_2',

'2_pop_3', '2_printer', '2_private', '2_red_i',

'2_remote_job', '2_rje', '2_shell', '2_smtp',

'2_sql_net', '2_ssh', '2_sunrpc', '2_supdup',

'2_systat', '2_telnet', '2_tftp_u', '2_tim_i',

'2_time', '2_urh_i', '2_urp_i', '2_uucp',

'2_uucp_path', '2_vmnet', '2_whois', '3_OTH',

'3_REJ', '3_RSTO', '3_RSTOS0', '3_RSTR', '3_S0',

'3_S1', '3_S2', '3_S3', '3_SF', '3_SH', '41_DoS',

'41_Probe', '41_R2L', '41_U2R', '41_normal']

In total: 42 In total: 144 In total: 123 In total: 126

18

Correlation

■ Find the pair-wise relationships

between all (numerical) features

– Using the .corr() pandas function

■ Range: −1,+1 :

– 𝑐 → −1: inversely proportional

values

– 𝑐 → 1: proportional values

– 𝑐 → 0: irrelevant values

19

X and Y components – Alignment
Standard scaling
■ Split the dataframes into features 𝑋 (col. 1- 41) and labels 𝑌 (col. 42)

– One-hot encode the 𝑋 component, leave 𝑌 as labels (output)

■ Alignment: training 𝑋 component is 125973 × 121, test 𝑋 is 22544 × 115

– Length difference doesn’t matter, but features dimensions need to be the

same

– Fill the empty values from extra columns with 0 in the right place

■ Standard scaler: 𝑥′ =
𝑥−𝜇

𝑠
(normal distribution)

𝑥′: new scaled value, 𝑥: original data value, 𝜇: mean of training samples, 𝑠: standard deviation

■ Two steps:

– Fitting: computes mean and standard deviation of the data → training set only

– Transformation: perform the scaling on the data → both sets

20

EVALUATION AND
RESULTS

21

Machine learning classification models

■ Logistic Regression

– Use the sigmoid function to test each class at a time

■ Decision Tree

– Create subsets (classes) based on questions posed on the dataset

■ K – Nearest Neighbours

– Classify with no hypotheses or conditions

■ Gaussian Naïve Bayes

– Conditional probability model based on Bayes theorem

■ Multi – Layer Perceptron

– Basic ANN architecture

22

Deviant performances

■ Training and test sets are very different

– Distribution and types of labels

– Difficulty levels

– Services and flags (highly correlated with many other features and with output)

■ Check for overfitting:

– Case A: training set 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + and test set (validation) 𝐾𝐷𝐷𝑇𝑒𝑠𝑡 +

– Case B: training and test set are part of 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + (using .train_test_split)

23

Accuracy

■ Overall ability of the model to classify correctly over all of the values

■ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑦,ො𝑦 =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
σ𝑖=0

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1 1 ෝ𝑦𝑖 = 𝑦𝑖

– ෝ𝑦𝑖: predicted output, 𝑦𝑖: real value

■ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

24

Case A (separate training and test sets)

CLASSIFICATION

ALGORITHM

CLASS

SCENARIO

TRAINING

SET

TEST

SET

C
A

S
E

 A
:

u
s
in

g
 t

h
e

 K
D

D
Tr

a
in

+
 a

n
d

 K
D

D
Te

s
t+

a
s
 t

ra
in

in
g
 a

n
d

 t
e

s
t

s
e

ts

LOGISTIC

REGRESSION

multi 0,99 0,70

binary 0,97 0,75

4-class 0,99 0,76

DECISION TREE

multi 1,00 0,71

binary 1,00 0,79

4-class 1,00 0,76

K NEAREST

NEIBOURS

multi 0,99 0,72

binary 0,99 0,77

4-class 0,99 0,74

GAUSSIAN

NAÏVE BAYES

multi 0,77 0,53

binary 0,84 0,55

4-class 0,65 0,42

MULTI LAYER

PERCEPTRON

multi 1,00 0,72

binary 1,00 0,79

4-class 1,00 0,77

25

Case B (split training and validation set)

CLASSIFICATION

ALGORITHM

CLASS

SCENARIO

TRAINING

SET

TEST

SET

C
A

S
E

 B
:
s
p

li
tt

in
g
 t

h
e

 K
D

D
Tr

a
in

+
 i
n

 t
ra

in
in

g

a
n

d
 t

e
s
t/

va
li
d

a
ti

o
n

 s
u

b
s
e

ts

LOGISTIC

REGRESSION

multi 0,99 0,99

binary 0,97 0,97

4-class 0,99 0,99

DECISION TREE

multi 1,00 1,00

binary 1,00 1,00

4-class 1,00 1,00

K NEAREST

NEIBOURS

multi 0,99 0,99

binary 0,99 0,99

4-class 0,99 0,99

GAUSSIAN

NAÏVE BAYES

multi 0,76 0,76

binary 0,85 0,85

4-class 0,65 0,65

MULTI LAYER

PERCEPTRON

multi 1,00 1,00

binary 1,00 1,00

4-class 1,00 1,00

26

Evaluation

■ Case B is not valuable or useful

– Traffic data won’t be so close to training data in real life

– Most models use the same dataset split for training and validation

■ Classification reports

– Detailed analysis of all models and classifications performance label by label

– All metrics → 1 for frequently encountered outputs and → 0 for scarce outputs

27

Evaluation of models

■ Less classes ↔ higher accuracy

■ Highest: DT+MLP binary classification 79%

■ Lowest: LR+DT multiclass classification 70%

■ GNB 53%, 55%, 42% :

– No Gaussian distribution of the data

– Many highly correlated features

28

Relevant research (2018-2022)

■ [1], [2]: combined 𝐾𝐷𝐷𝑇𝑟𝑎𝑖𝑛 + and 𝐾𝐷𝐷𝑇𝑒𝑠𝑡 + into one and split it (similar to case B)

– accuracy 99 − 99,6%

– DT, RF, MLP algorithms

■ [3]: with PCA, reduced to 6 features

– All features → accuracy 74 − 79%

– Reduced → 71 − 75%

– DT, DNN, PCA+DNN algorithms

29

Relevant research (2018-2022)

■ [4]: input layer, multiple CNN, BLSTM, attention layer

– Accuracy 84,2%

– With DT, MLP, RF, accuracy 72 − 78%

■ [5]: AE (115>50 features), sparse AE (50>10), LR (10>2)

– Binary classification only

– Accuracy 87,2%

■ [6]: Best of performance of all with LSTM, DCNN, Denoising and Contractive AE

– Accuracy 89% 𝐿𝑆𝑇𝑀 , 81 − 85% 𝐴𝐸

– RF, DR, k-NN, MLP algorithms → accuracy 74 − 82%

30

DISCUSSION – FUTURE
WORK

31

This Project

■ Basic (and outdated) algorithms gave results not far behind state-of-the-art

■ Utilizes one of the most popular datasets available

■ Compares five common classification methods

■ Compares different classification scenarios

■ Open to upgrades in both data and algorithms

■ Can be comparable with recent research

– Still use NSL-KDD as benchmark

32

Future work

■ Use the NSL-KDD as an unsupervised dataset, and be able to validate results

– Attention mechanisms, AE, clustering methods

■ More advanced supervised methods (DNN, CNN, LSTM)

■ Data-centric upgrade: use real data with unsupervised learning

– With data from a secure environment, AEs would perform very well

– NSL-KDD can be used for validation of the unsupervised models

– More advanced project: feature extraction/selection, data cleaning, unsupervised

methods only

33

Relevant research (2018-2022)

■ [1] J. J. Estévez-Pereira, D. Fernández, and F. J. Novoa, “Network Anomaly Detection Using Machine

Learning Techniques,” Aug. 2020, p. 8. doi: 10.3390/proceedings2020054008 (n.11)

■ [2] O. Jamal Ibrahim et al., “Network intrusion detection: a comparative study of four classifiers

using the NSL-KDD and KDD’99 datasets,” J. Phys, p. 12043, 2022, doi: 10.1088/1742-

6596/2161/1/012043. (n.13)

■ [3] S. Rawat, A. Srinivasan, V. Ravi, and U. Ghosh, “Intrusion detection systems using classical

machine learning techniques vs integrated unsupervised feature learning and deep neural

network,” Internet Technology Letters, vol. 5, no. 1, Jan. 2022, doi: 10.1002/itl2.232. (n.9)

■ [4] T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, “BAT: Deep Learning Methods on Network Intrusion

Detection Using NSL-KDD Dataset,” IEEE Access, vol. 8, pp. 29575–29585, 2020, doi:

10.1109/ACCESS.2020.2972627. (n.36)

■ [5] S. Gurung, M. K. Ghose, and A. Subedi, “Deep Learning Approach on Network Intrusion Detection

System using NSL-KDD Dataset,” Computer Network and Information Security, vol. 3, pp. 8–14,

2019, doi: 10.5815/ijcnis.2019.03.02. (n.12)

■ [6] S. Naseer et al., “Enhanced network anomaly detection based on deep neural networks,”

IEEE Access, vol. 6, pp. 48231–48246, Aug. 2018, doi: 10.1109/ACCESS.2018.2863036. (n.35)

34

Resources

■ Python Jupyter notebook

■ Libraries:

– Pandas

– Numpy

– Sklearn

■ Linear_model, tree, neighbors, naive_bayes, neural_network

■ Preprocessing, metrics, model_selection

– Matplotlib

– Seaborn

35

Acknowledgments

I would like to thank my supervisors, mr. Kostas Siozios and mr. Minas Dasygenis, for their guidance and support

throughout the whole process of creating this thesis.

I also want to thank Dimitris Tsiktsiris, for his thoughtful advice and help.

The IT department of AUTH, and especially mr. Georgios Pallas, for their help in gathering and preparing the traffic

from the university gateway, even though that part of the project failed to launch in the end.

Lastly, I would like to express my gratitude to my family and friends, for the years of constant support, help and

encouragement that they generously provided me with throughout my undergraduate and postgraduate studies,

and for their patience while I was ranting about things they didn’t understand.

This thesis was partially supported by the Hellenic Petroleum Company and the Special Account for Research Funds,
through the Scholarship for Academic Excellence during the academic year 2020-2021

36

Thank you

37

