
Computer Vision with OpenCV

C++/Python

Tourtouras Evangelos

Supervisor: Dr. Minas Dasygenis

Date: 19/6/2018

1

UNIVERSITY OF WESTERN MACEDONIA

FACULTY OF ENGINEERING

Department of Informatics & Telecommunications Engineering

Contents

• Module A: Introduction

1. The theory of computer vision.

2. The importance of it.

3. The Basic functionality of OpenCV
programming library with examples in
C++ and Python.

• Module B: Advance subjects

1. Feature extraction

2. Background subtraction

3. Object Detection

2

Module A

In this lecture, the students will be

introduced to:

• The theory of computer vision.

• The importance of it.

• The Basic functionality of OpenCV

programming library with examples in

C++ and Python.

3

Computer Vision

• It is a field that is trying to make
computers to understand at an advanced
level what you gain from images or
videos.

• It is the data that transformed from a still
or video camera.

• From the side of engineering, it is trying
to find a way to automate tasks that also
can be done by our visual system.

4

What methods does computer vision

include?

• Acquiring digital images.

• Processing digital images.

• Analyzing digital images.

• Understanding digital images.

• Extracting high- dimensional data from the
real World.

• As for science, it is believed that is the
theory behind artificial systems which can
gain information by the images.

5

The Importance of Computer vision

#1/12C

• Video Event Detection

We can detect events happening on a

video by searching its data directly.

In videos, there are elements for each

event or a set of elements that help us for

the process.

6

The Importance of Computer vision

#2/12

• Machine learning is using techniques

that are statistical so it can give computer

systems the ability to learn. We can use

machine learning in various computing

tasks such as email filtering.

7

The Importance of Computer vision

#3/12

• Indexing

We use Indexing to optimize access to

data records which are organized in files.

• Scene reconstruction is how we can

recover a 3D scene from pictures or

photographs so that we can extract and

track from the objects.

8

The Importance of Computer vision

#4/12

• Motion estimation

When we want to describe the
transformation of one 2D image to another
we use this processes of determining
motion vectors.

This motion vectors can be related to
specific parts of the image but it may also
relate to the whole image that’s what we call
“GLOBAL MOTION ESTIMATION”.

9

The Importance of Computer vision

#5/12

• Image restoration

This is a method that we can restore a

corrupted image. The corruption of an

image may be caused by noise, motion

blur or with camera miss-focus.

10

The Importance of Computer vision

#6/12

• 3D Pose estimation

This is a problem of how to define the

transformation of an object in a 2D image

to a 3D object. This problem is appearing

from the limitations of feature-based

pose estimation.

11

The Importance of Computer vision

#7/12

• Video tracking

With this process, we can locate a moving

object or multiple objects over time with

the use of cameras.

We can use this process for :

1. video communication and compression

2. human-computer interaction

3. medical imaging

12

The Importance of Computer vision

#8/12

• Video tracking

We can also use this process for:

1. video editing

2. security and surveillance

3. traffic control

4. augmented reality

13

The Importance of Computer vision

#9/12

• Object recognition

This technology allows us to find or
identify objects from an image or a video
sequence.

Object Recognition it is best for retail
and fashion to find products in real-time
based off of an image or scan and much
more.

14

The Importance of Computer vision

#10/12

• Optical Character Recognition (OCR)

with these we can recognize and identify

text in documents.

• Medical Imaging: we can obtain 3D

imaging and image-guided surgery.

• Sports: In a game when they draw

additional lines on the field.

15

The Importance of Computer vision

#11/12

• Vision Biometrics where we can Recognize
people who have been missing through iris
patterns.

• Smart Cars: Through computer vision, they can
identify objects and humans.

• Special Effects: Motion capture and shape
capture, any movie with CGI.

• 3-D Printing and Image Capture: Used in movies,
architectural structures and much more.

• Social Media: Anything that has a story which
allows you to wear something on your face.

16

The Importance of Computer vision

#12/12

In conclusion, the are various domains for
computer vision such as video games,
computer vision in Space, medicine,

robotics and in other industries too. May
Computer Vision is one of the most easier

terms to define but it is also difficult to
teach computers. The proof of that matter is

that it has past at least 80 years for the AI
and deep learning to reach its level we see

it now and still keep evolving.

17

Introduced to OpenCV (Open Source

Computer Vision Library) #1/3

• OpenCV is a library with a lot of

programming functions and it is focused

on real-time computer vision.

• OpenCV was developed by an Intel

research initiative and the purpose of it

was to advance CPU-intensive

applications.

18

Introduced to OpenCV (Open Source

Computer Vision Library) #2/3

Intel continued to launch projects such as 3D display walls
and real-time ray tracing. OpenCV was created to make
computer vision infrastructure available for many things.

Some of the goals for the OpenCV was:

• To advance vision research so they provided open and
they had optimized the code for basic vision vi
infrastructure.

• To intersperse the knowledge of computer vision so they
gave a common infrastructure so the developers could
build on and the code could be readable and
transferable.

• To advance vision-based commercial applications to
achieve that, they wanted to make an portable
performance –optimized code which could be available
for free.

19

Introduced to OpenCV (Open Source

Computer Vision Library) #3/3

Generally, OpenCV is receiving many user
contributions. OpenCV was under active
development at Willow Garage and now
there is an OpenCV foundation that
supports it.

Nowadays OpenCV is still evolving with the
help both of OpenCV foundation and
several public and private institutions.

20

OpenCV timeline from 1999 to 2015

21

The block diagram of OpenCV

• The built of OpenCV is in layers. In the top of the
layer is the Operating System (OS) that we use to
operate OpenCV.

• In the next layer, we have the opencv_contrib
which is the contributed code. This code
includes higher-level functionality.

• The next layer is the core of OpenCV.

• At the last layer which is the bottom layer, there
are many hardware optimizations we call that
layer “hardware acceleration layer”.

22

Block Diagram Of OpenCV

Operating Systems (OS)

LINUX WINDOWS iOS ANDROID OSX

Bindings: Java, Python Apps, Samples, Solutions

Opencv_contrib

rgbd, text, face, etc..

OpenCV

Object detection, core, image processing, etc..

OpenCV HAL

OpenCL, OpenCV4Tegra, NEON, SSE, CUDA, IPP, etc..

23

OpenCV Contribution Repository

The old library of OpenCV has been split into
two parts these parts are:

1. OpenCV mature.

2. Current state of the art in larger
vision functionality at opencv_contrib.

The first is maintained by the core OpenCV
group and it includes mostly stable code, on the
other hand, the second is less mature, is
developed and maintained by the Programmer
communities for open source.

24

A few modules of opencv_contrib

repository #1/2

• Tracking (This has modern object

tracking algorithms).

• rgdb (This is for processing depth maps

and RGB obtained by depth sensors

such as Kinect or it can be computed by

stereo correspondence algorithms).

• Face (Face recognition)

• Dnn (Deep neural networks)

25

A few modules of opencv_contrib

repository #2/2

• Text (It can recognize and detect text, it

might use optionally OCR Tesseract open

source as backend).

• xphoto, ximgproc (This is for both

computational photography and

advanced image processing).

• Bioinspired (which is biologically

inspired vision).

26

OpenCV portability

• The goal for the design of OpenCV was
to be portable. OpenCV code was
created to compile by any compliant
C++ compiler. That helped to make
cross-platform support easier.

• There is support for systems of Intel and
AMD which is more mature but the ARM
support is getting an improvement over
the time.

27

OpenCV portability guide for 1.0 released

version

Compatibility Architecture

x86/x64

ARM PPC,MIPs ..

Linux Parallel, 1I/O, IPP,

SIMD

Parallel, 1I/O,

SIMD

Parallel, 1I/O

Windows Parallel, I/O, IPP,

SIMD

Parallel(3.0), I/O,

SIMD

N/A

OS X/ iOS Parallel, 2I/O,

IPP(3.0), SIMD

Parallel, I/O,

SIMD

N/A

Android Parallel, I/O,

IPP(3.0), SIMD

Parallel, 2I/O,

SIMD

MIPS basic

support

QNX,BSD,etc. SIMD SIMD -

28

1. The parallelization in Linux can be done by enabling OpenMP or via a third –

party library.

2. In Android the parallelization is done by Intel TBB.

Download and install OpenCV #1/34

• You can download the complete source

code and the latest updates from the main

OpenCV page, which is:

https://opencv.org/releases.html

• If you want more recent higher functionality

you can download and build

opencv_contrib via GitHub in the following

link:

https://github.com/opencv/opencv_contrib

29

https://opencv.org/releases.html
https://github.com/opencv/opencv_contrib

Download and install OpenCV #2/34

• Nowadays OpenCV uses Git as its
development version control system and
CMake to build.

• For building, there are compiled libraries
for environments.

• As far as you go in OpenCV and become
a high-level user, you will probably want
to recompile the libraries with options
that are more suited to your application.

30

Download and install OpenCV #3/34

• Windows:You can find and download
OpenCV in the following link:
https://opencv.org/releases.html

• After you Download the executable file
you are almost ready to use OpenCV.

• If you want to make easier for your
compiler to find the OpenCV binaries
you need to add an OPENCV_DIR
environment variable.

31

https://opencv.org/releases.html

Download and install OpenCV #4/34

• To do that you need to go to command

prompt and type the following: “setx –m

OPENCV_DIR

C:\OpenCV\Build\x64\vc10”.

• OpenCV3 has IPP linked in, that means

that you are going to get performance

advantage of modern x86 and x64 CPUs.

32

Download and install OpenCV #5/34

• An alternative way is to Build OpenCV via a source tarball.
The steps are:

a) Run the CMake GUI.

b) Specify paths to the source tree of the OpenCV and
the build directory.

c) Press Configure two times, choose the appropriate
generator of Visual Studio or MinGW makefiles if
you are going to use MinGW and then press
Generate.

d) After you Generate it you need to open the
generated solution in visual studio and built it. If we
are going to use MinGW we need to check the next
page that explains the installation of OpenCV in
Linux.

33

Download and install OpenCV #6/34

• Linux: The link to download OpenCV is the same
to the link for windows. In Linux to build libraries
and Demos we will need the following:

a) GTK+ 2.x or higher, including headers.

b) We will need a gcc compiler.

c) The essential development packages.

d) cmake, libtbb, zlib, libjpeg, libpng, libtiff
and libjasper.

e) And last the development files, i.e. the
versions with –dev at the end of their
package names.

34

Download and install OpenCV #7/34

• In order to make Python buildings to

work in Linux, we are going to need a

Python 2.6 or later version with the

headers being installed and NumPy.

• We are going to need libav* libraries

such as libavcodec from ffmpeg.

35

Download and install OpenCV #8/34

• To download the libav/ffmpeg packages
we need to visit the following webpage:
http://www.ffmpeg.org/.

• If you want to use it with non-GPL
software, build and use a shared ffmpeg
library:

$> ./configure –enable-shared

$> make

$> sudo make install

36

http://www.ffmpeg.org/

Download and install OpenCV #9/34

• In the end we are going to have the
following

1. /usr/local/lib/libavcodec.so.*

2. /usr/local/lib/libavformat.so.*

3. /usr/local/lib/libavutil.so.*

• And the we can include files with
various paths like
/usr/local/include/libav*.

37

Download and install OpenCV #10/34

• Actually to build the library, unpack the .tag.gz
file, after that go to the created source directory
and type this :

mkdir release

cd release

cmake –D
CMAKE_BUILD_TYPE=RELEASE –D
CMAKE_INSTALL_PREFIX=/usr/local ..

make

sudo make install # optional

38

Download and install OpenCV #11/34

• Lets see step by step how to install open

cv3 in ubuntu.

• Step one: We need to update and

upgrade the packages of our Operation

System.

1. sudo apt-get update

2. sudo apt-get upgrade

39

Download and install OpenCV #12/34

• Step two: We need to Install the Operation

System Libraries.

1. Remove any previous installations of

x264</h3>

2. sudo apt-get remove x264 libx264-dev

3. We will Install dependencies now

4. sudo apt-get install build-essential

checkinstall cmake pkg-config yasm

40

Download and install OpenCV #13/34

• Step two: We need to Install Operation

System Libraries.

5. sudo apt-get install git gfortran

6. sudo apt-get install libjpeg8-dev

libjasper-dev libpng12-dev

7. # If you are using Ubuntu 14.04

8. sudo apt-get install libtiff4-dev

41

Download and install OpenCV #14/34

• Step two: We need to Install Operation
System Libraries.

9. # If you are using Ubuntu 16.04

10. sudo apt-get install libtiff5-dev

11. sudo apt-get install libavcodec-
dev libavformat-dev libswscale-
dev libdc1394-22-dev

12. sudo apt-get install libxine2-dev
libv4l-dev

42

Download and install OpenCV #15/34

• Step two: We need to Install Operation
System Libraries.

13. sudo apt-get install
libgstreamer0.10-dev
libgstreamer-plugins-base0.10-dev

14. sudo apt-get install qt5-default
libgtk2.0-dev libtbb-dev

15. sudo apt-get install libatlas-base-
dev

43

Download and install OpenCV #16/34

• Step two: We need to Install Operation
System Libraries.

16. sudo apt-get install libfaac-dev
libmp3lame-dev libtheora-dev

17. sudo apt-get install libvorbis-dev
libxvidcore-dev

18. sudo apt-get install libopencore-
amrnb-dev libopencore-amrwb-dev

19. sudo apt-get install x264 v4l-utils

44

Download and install OpenCV #17/34

• Step two: We need to Install Operation
System Libraries.

20. # Optional dependencies

21. sudo apt-get install libprotobuf-dev
protobuf-compiler

22. sudo apt-get install libgoogle-glog-
dev libgflags-dev

23. sudo apt-get install libgphoto2-dev
libeigen3-dev libhdf5-dev doxygen

45

Download and install OpenCV #18/34

• Step three: We need to Install Python

Libraries.

1. sudo apt-get install python-dev

python-pip python3-dev python3-

pip

2. sudo -H pip2 install -U pip numpy

3. sudo -H pip3 install -U pip numpy

46

Download and install OpenCV #19/34

• Step three: We need to Install Python Libraries using
the virtual Environment.

1. # Install virtual environment

2. sudo pip2 install virtualenv
virtualenvwrapper

3. sudo pip3 install virtualenv
virtualenvwrapper

4. echo "# Virtual Environment Wrapper" >>
~/.bashrc

5. echo "source
/usr/local/bin/virtualenvwrapper.sh" >>
~/.bashrc

6. source ~/.bashrc

47

Download and install OpenCV #20/34

• Step three: We need to Install Python Libraries using
the virtual Environment.

1. # For Python 2 #

2. # create virtual environment

3. mkvirtualenv facecourse-py2 -p python2

4. workon facecourse-py2

5. # now install python libraries within this
virtual environment

6. pip install numpy scipy matplotlib scikit-
image scikit-learn ipython

7. # quit virtual environment

8. deactivate

48

Download and install OpenCV #21/34

• Step three: We need to Install Python Libraries using
the virtual Environment.

1. # For Python 3 #

2. # create virtual environment

3. mkvirtualenv facecourse-py3 -p python3

4. workon facecourse-py3

5. # now install python libraries within this
virtual environment

6. pip install numpy scipy matplotlib scikit-
image scikit-learn ipython

7. # quit virtual environment

8. deactivate

49

Download and install OpenCV #22/34

• Step four: We need to Download OpenCV
and OpenCV contrib from their GitHub
repositories.

1. # Download opencv from Github

2. git clone
https://github.com/opencv/opencv.git

3. cd opencv

4. git checkout 3.3.1

5. cd ..

50

Download and install OpenCV #23/34

• Step four: We need to Download OpenCV
and OpenCV contrib from their GitHub
repositories.

1. # Download opencv_contrib from Github

2. git clone
https://github.com/opencv/opencv_contr
ib.git

3. cd opencv_contrib

4. git checkout 3.3.1

5. cd ..

51

Download and install OpenCV #24/34

• Step four: We need to Download OpenCV

and OpenCV contrib from their GitHub

repositories.

1. git clone

https://github.com/opencv/opencv_contri

b.git

2. cd opencv_contrib

3. git checkout 3.3.1

4. cd ..

52

https://github.com/opencv/opencv_contrib.git
https://github.com/opencv/opencv_contrib.git

Download and install OpenCV #25/34

• Step five: Create and build directory, Run

CMake.

1. cd opencv

2. mkdir build

3. cd build

4. cmake -D CMAKE_BUILD_TYPE=RELEASE

\

5. -D CMAKE_INSTALL_PREFIX=/usr/local \

6. -D INSTALL_C_EXAMPLES=ON \

53

Download and install OpenCV #26/34

• Step five: Create and build directory, Run CMake.

7. -D INSTALL_PYTHON_EXAMPLES=ON \

8. -D WITH_TBB=ON \

9. -D WITH_V4L=ON \

10. -D WITH_QT=ON \

11. -D WITH_OPENGL=ON \

12.-D
OPENCV_EXTRA_MODULES_PATH=../../open
cv_contrib/modules \

13.-D BUILD_EXAMPLES=ON ..

54

Download and install OpenCV #27/34

• Step six: compile and install

1. # find out number of CPU cores in your
machine

2. nproc

3. # substitute 4 by output of nproc

4. make -j4

5. sudo make install

6. sudo sh -c 'echo "/usr/local/lib" >>
/etc/ld.so.conf.d/opencv.conf'

7. sudo ldconfig

55

Download and install OpenCV #28/34

• Step seven: virtual environment, create sym link.

1. find /usr/local/lib/ -type f -name "cv2*.so"

2. # For Python 2 #

3. # binary installed in dist-packages

4. /usr/local/lib/python2.6/dist-packages/cv2.so

5. /usr/local/lib/python2.7/dist-packages/cv2.so

6. # binary installed in site-packages

7. /usr/local/lib/python2.6/site-packages/cv2.so

8. /usr/local/lib/python2.7/site-packages/cv2.so

56

Download and install OpenCV #29/34

• Step seven: virtual environment, create sym link.

1. # For Python 3 #

2. # binary installed in dist-packages

3. /usr/local/lib/python3.5/dist-
packages/cv2.cpython-35m-x86_64-linux-gnu.so

4. /usr/local/lib/python3.6/dist-
packages/cv2.cpython-36m-x86_64-linux-gnu.so

5. # binary installed in site-packages

6. /usr/local/lib/python3.5/site-
packages/cv2.cpython-35m-x86_64-linux-gnu.so

7. /usr/local/lib/python3.6/site-
packages/cv2.cpython-36m-x86_64-linux-gnu.so

57

Download and install OpenCV #30/34

• Step seven: virtual environment, create sym
link.
1. # For Python 2 #

2. cd ~/.virtualenvs/facecourse-py2/lib/python2.7/site-
packages

3. ln -s /usr/local/lib/python2.7/dist-packages/cv2.so
cv2.so

4. # For Python 3 #

5. cd ~/.virtualenvs/facecourse-py3/lib/python3.6/site-
packages

6. ln -s /usr/local/lib/python3.6/dist-
packages/cv2.cpython-36m-x86_64-linux-gnu.so cv2.so

58

Download and install OpenCV #31/34

• Step eight: C++ code testing

1. # compile and run

2. # There are backticks (`) around
pkg-config command not single
quotes

3. g++ -std=c++11 removeRedEyes.cpp
`pkg-config --libs --cflags opencv` -o
removeRedEyes

4. ./removeRedEyes

59

Download and install OpenCV #32/34

• Step nine: Python code testing

1. # Activate virtual environment for

Python 2 #

2. workon facecourse-py2

3. # Activate virtual environment for

Python 3 #

4. workon facecourse-py3

60

Download and install OpenCV #33/34

• Step nine: Python code testing

1. ipython

2. import cv2

3. print cv2.__version_

4. # If the OpenCV is perfectly installed
the print cv2 should give you 3.3.1
output.

5. # To exit ipython press Ctrl+D

6. # to exit python virtual environment
write“ deactivate”.

61

Download and install OpenCV #34/34

• Mac OS X: The installation procedure is similar to
Linux but OS X has its own development
environment, Xcode that has everything except
Cmake. Also, you don’t need TBB, GTK+, ffmpeg,
libjpeg, etc..

1. Instead of GTK+ it has by default Cocoa.

2. Instead of ffmpeg it has by default QTKit.

3. Instead of OpenMP and TBB it uses Grand
Dispatch Central (GDC).

4. If you want you can pass the –G Xcode
option to make Cmake Xcode project for
OpenCV to build and debug the code
within Xcode.

62

Header files OpenCV C++ #1/6

• To call the header files of each OpenCV
module we use the main file header which
is the following:
“…/include/opencv2/opencv.hpp;”.

• For old data structures in C and arithmetic
routines we use #include
<opencv2/core/core_c.h>.

• For new data structures in C++ and
arithmetic routines we use #include
<opencv2/core/core.hpp>.

63

Header files OpenCV C++ #2/6

• For background segmentation routines
and video tracking we use #include
<opencv2/video/video.hpp>.

• For image processing functions in old C
we use #include
<opencv2/imgproc/imgproc_c.h>.

• For image processing functions in new
C++ we use #include
<opencv2/imgproc/imgproc.hpp>.

64

Header files OpenCV C++ #3/6

• For two-dimensional feature tracking
support we use #include
<opencv2/features2d/featutes2d.hpp>.

• For using specific algorithms to handle
and restore photographs we use
#include <opencv2/video/photo.hpp>.

• For approximate the nearest neighbor
matching functions we use #include
<opencv2/flann/miniflann.hpp>.

65

Header files OpenCV C++ #4/6

• For user-contributed code such as fuzzy
mean-shift tracking, self- similar features,
flesh detection, and spin images we use
#include <opencv2/contrib/contrib.hpp>.

• For planar patch detector, Cascade face
detector, HoG and latent SVM we use
#include
<opencv2/objdetect/objdetect.hpp>.

• For machine learning such as pattern
recognition and clustering we use #include
<opencv2/ml/ml.hpp>.

66

Header files OpenCV C++ #5/6

• For image display ,mouse interaction,
I/O and sliders in old C we use #include
<opencv2/highgui/highgui_c.h>.

• For image display, mouse, I/O, sliders
and buttons in new C++ we use #include
<opencv2/highgui/highgui.hpp>.

• For stereo and calibration we use
#include
<opencv2/calib3d/calib3d.hpp>.

67

Header files OpenCV C++ #6/6

• If we want to include every possible OpenCV
function we can use the include file opencv.hpp
but it comes with a drawback and that drawback
is that the compile time will have a delay.

• Example: If you want to use includes for image
processing you can include the
opencv2/imgproc/imgproc.hpp instead of
opencv.hpp, it will compile faster. You can find
the .hpp file in
…/modules/imgproc/include/opencv2/imgproc
/imgproc.hpp.

68

First example: Display an image #1/15

• One of the most common utilities that OpenCV provides is reading from a wide array of video
or image file types.

//Here is an example of an OpenCV program that loads an image from the disc

//and displays that image on the screen.

// As we said before the opencv.hpp support every function of OpenCV

// but the compile process is going slow

#include <opencv2/opencv.hpp>

int main(int argc, char** argv)

{

cv::Mat img = cv::imread(argv[1], -1);

if(img.empty())

{

return -1;

}

cv::namedWindow("img_example1", cv::WINDOW_AUTOSIZE);

cv::imshow("img_example1",img);

cv::waitKey(0);

cv::destroyWindow("img_example1");

return 0;

}
69

First example: Display an image #2/15

• As we saw in the previous example we

use in each start cv:: that means we need

to tell the compiler that we are talking

about the cv namespace.

• cv namespace is where the functions of

OpenCV exists.

• To avoid using all the time cv:: we can

use once this: “using namespace cv;”.

70

First example: Display an image #3/15

• Now we will see an example using “using
namespace cv;” in the first example, we use general
include opencv.hpp but in this example, we will use
only the necessary include file to improve the
compile time.

• In this example, there is a risk of conflicting names
with other potential namespaces. For example, if the
function f() exist, say in the cv and std names that you
must specify the function you are talking about by
using cv::f() or std::f(). In this example, we will use
the explicit from cv:: for the objects in the
namespace of OpenCV. This is considered to be a
better programming method.

71

First example: Display an image #4/15

//Second example about how we display an image

// In this example instead of #include <opencv2/opencv.hpp

// which is slow to compile we use direct include file

//#include "opencv2/highgui/highgui.hpp" for faster compile processing

//also as you notice instead of using the namespace cv:: we use

//once using namespace cv;

#include "opencv2/highgui/highgui.hpp"

using namespace cv;

int main (int argc, char** argv){

Mat img= imread(argv[1], -1);

if(img.emty())

{

return -1;

}

nameWindow("img_example2", cv::WINDOW_AUTOSIZE):

imshow("img_example2", img);

waitKey(0);

desrtoyWindow("img_example2");

}

72

First example: Display an image #5/15

• If we compile and run via command line with a
single argument, in the first example loads an
image into memory and it displays it in the
screen after that it waits from the user to press a
Key to close a window and to exit.

• Definitely the built instructions are highly
platform dependent. An example about how you
can compile the second example in Unix: gcc -v
img_example2.cpp -I/usr/local/include/ -
L/usr/lib/ -lstdc++ -L/usr/local/lib -
lopencv_highgui -lopencv_core - -o
img_example2 .

73

First example: Display an image #6/15

• Lets explain the line that loads the image in the
first example which is “cv:: Mat img = cv::
imread(argv[1],-1);”. First of all, I would like to
make a point, it is essentially for a good
programmer to understand how much important
is the error –handling code.

• The high-level routine cv::imread() can
determine the file format that will be loaded
based on the filename and it allocates
automatically the memory that it needs for the
image data structure.

74

First example: Display an image #7/15

The following image formats can be read by the function
cv::imread():

• JPEG

• PNG

• BMP

• JPE

• DIB

• TIFF

• PBM

• SR

• RAS

• PPM

• PGM

75

First example: Display an image #8/15

• The structure that is returned is cv::Mat.

• The cv::Mat structure can handle all kind
of images such as:

1. floating-point-valued

2. Multichannel

3. Integer-valued

4. Single channel

5. etc..

76

First example: Display an image #9/15

• The next line is: “ if(img.empty()) {

return -1};”. In this line we check if an

image was read.

• The next function which is a high level

function is: “cv::namedWindow()”. This

function can open a window on the

screen which contains and displays an

image.

77

First example: Display an image #10/15

• Since we explained previously the function
“cv::namedWindow()” we can now explain the
next line of the program that contains this
function which is : “cv::namedWindow(
"img_example1", cv::WINDOW_AUTOSIZE);.

• This function also can assign a name to the
window, the name we chose to give is
"img_example1“. The HighGUI which provide
us this function can call the interact with this
window by referring to it by it the name we
gave.

78

First example: Display an image #11/15

• The argument that defines the properties of the
window is the second argument to
cv::nameWindow().

• We can set the value to default or we can set it to
cv::WINDOW_AUTOSIZE.

• If we set the value to default the size of the
window will be the same regardless of the image
size. The image will fit within the window. If we
use cv::WINDOW_AUTOSIZE will contract
automatically or it will expand when the image is
loaded so it will accommodate the true size of
the image.

79

First example: Display an image #12/15

• The next line is :
“cv::imshow("img_example1",img);”. With
this function since we have an Image in the
structure cv::Mat we can display the image
in an existing window.

• This function can also create a window if we
have no window.

• When we call this function the window will
be redrawn with the image on it and it will
resize itself if it was created by the flag :
cv::WINDOW_AUTOSIZE.

80

First example: Display an image #13/15

• The next line that we will explain is:
“cv::waitKey(0);”.

• This function asks the program to stop and
wait until we press a Key.

• If we give an argument that is positive the
program will wait for a specific time and
then it will be continued no matter if no Key
is pressed.

• If we set the argument to a negative number
or to 0 the program will wait till we press a
key.

81

First example: Display an image #14/15

• There is the Standard Template Library

(STL) which contains classes that make

the images to automatically deallocated

when they go out of scope. “cv::Mat” is

similar to (STL).

• We can control this automatic

deallocation with an internal reference

counter.

82

First example: Display an image #15/15

• The final line of the code that we are going to
explain is:
“cv::destroyWindow("img_example1");”.

• With this function, we can close the window and
deallocate the associated memory usage.

• If we have short programs we are going to skip
that step but if we have larger programs which
might be more complex, we the programmers
should make sure to tidy up the windows before
they go out of the scope so we can avoid any
memory leaks.

83

Display an image C

84

Source file: http://technodocbox.com/docs-images/71/66220294/images/11-

1.jpg, last time visited 5/29/2018.

http://technodocbox.com/docs-images/71/66220294/images/11-1.jpg
http://technodocbox.com/docs-images/71/66220294/images/11-1.jpg
http://technodocbox.com/docs-images/71/66220294/images/11-1.jpg
http://technodocbox.com/docs-images/71/66220294/images/11-1.jpg
http://technodocbox.com/docs-images/71/66220294/images/11-1.jpg

Second example: Video processing #1/6

• In video processing, we have a new issue

that we face. That issue is that we need

some kind of loop to read each frame in a

row of time (sequence).

• Since we need that loop we also might

need a method or a way to get out of that

loop we created.

85

Second example: Video processing #2/6

• Here is an example of playing video from a disk via OpenCV.

// We include the both higui.hpp and imgproc.hpp

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/higui/higui.hpp"

int main(int argc, char** argv)

{

cv::namedWindow("video_example1", cv::WINDOW_AUTOSIZE);

cv::VideoCapture capture;

capture.open(string(argv[1]));

cv::Mat frame;

for(;;)

{

capture >> frame;

// we use now if. if we run out of film

if(frame.empty())

{

break;

}

cv::imshow("video_example1", frame);

if(cv::waitKey(33) >=0)

{

break;

}

}

return 0;

}

86

Second example: Video processing #3/6

• In this example firstly we name the
window “video_example1”.

• Then we create a video capture object
with the “cv::VideoCapture capture;” we
gave the name capture in the object then
it is instantiated.

• With the object we created can open and
close video files of as many types as
ffmpeg supports.

87

Second example: Video processing #4/6

• Lets see the lines “capture.open(

string(argv[1]));” and “cv::Mat frame;”.

• We give a string to the object that we

created that contains the path and the

filename of the video we want to open.

• The object will have all the information

about the video file it read and the state

information.

88

Second example: Video processing #5/6

• The “cv::Mat frame;” instantiates a data object to
hold video frames.

• The code that we have inside the loop which is:
“capture >> frame;”,”
if(frame.empty()){break;}”,”
cv::imshow("video_example1", frame);” , first it
will read frame by frame the capture object
stream then it will check the if the data of the
video was read if it was not read it quits.

• When the video frame was read it can be
displayed by “cv::imshow()”.

89

Second example: Video processing #6/6

• Now we will explain the last line which is: “if(
cv::waitKey(33) >=0){break;}”, In this function, we
can give the amount of time we want to wait we gave
it 33 ms to wait.

• When the frame is completed displayed it waits 33
ms.

• In that time if we press a key we are going to exit
from the loop.

• If we let the 33 ms to pass without pressing any key
the program will execute the loop again.

• And last, when we exit, the allocated data is being
released automatically when it goes out of scope.

90

Example for video: Moving around #1/23

• In the first example of the video example, we can
see that in the video player we cannot move around
quickly within the video.

• To solve that problem in this example we are going
to insert a slider track bar. This will allow us to move
quickly within the video.

• Also, we are going to give the user more control. We
are going to let the user single step the video by
pressing “t” from the keyboard and we are going to
allow the user to go into the run mode by pressing
“r” from. When the user jumps in a new location in
the video with the track bar that we will create, we
can pause there in single step mode.

91

Example for video: Moving around #2/23

• The function we are going to call for
creating the track bar is
“createTrackbar()”.

• This function also indicates which
window we are going to set the track bar
to appear in.

• For this to work well we are going to
need a callback that will do the
relocation.

92

Example for video: Moving around #3/23

// This is the second example for OpenCV: video.

//In this example we are going to add a track bar slider

//in the basic window viewer that will allow us to

// move around within the video file.

#include <fstream>

#include <iostream>

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/highui/highgui.hpp"

using namespace std;

// we also could use the

// using namespace cv to

// avoid using cv:: all the time.

int g_dontset=0, g_run=1;

// we set the slider's possition.

int g_slider_position=0;

//now we create the object g_ capture.

cv::VideoCapture g_capture;

93

Example for video: Moving around #4/23

// we create the track bar slide function.

void onTrackbarSlide(int position, void *)

{

// we set the position to the object we created.

g_capture.set(cv::CAP_PROP_POS_FRAMES,
position);

if(!g_dontsep)

g_run=1;

g_dontset=0;

}

94

Example for video: Moving around #5/23

int main(int argc, char** argv)

{

cv::nameWindow("video_example2", cv::WINDOW_AUTOSIZE);

g_capture.open(string (argv[1]));

int tmph=(int) g_capture.get(cv::CAP_PROP_FRAME_HEIGHT);

int frames=(int) g_capture.get(cv::CAP_PROP_FRAME_COUNT);

int tmpw=(int) g_capture.get(cv::CAP_PROP_FRAME_WIDTH);

cout << "The video has :" << frames << "frames of the dimensions
(" <<tmpw <<","<< tmph <<")."<< endl;

cv::createTrackbar("Position",
"video_example2",&g_slider_position,frames,onTrackbarSlide);

cv::Mat frame;

95

Example for video: Moving around #6/23

for(;;)

{

if(g_run !=0)

{

g_capture >> frame;

if(frame.empty())

{

break;

}

int current_position = (int)
g_capture.get(cv::CAP_PROP_POS_FRAMES);

g_dontset=1;

cv::setTrackbarpos("Position","video_example2",
current_position);

c::imshow("video_example2",frame);

g_run=1;

}

}

96

Example for video: Moving around #7/23

char key=(char) cv::waitKey(15);

// we set the key for single step.

if(key== 't')

{

g_run=1;

cout<<"Single step, run =" <<g_run << endl;

}

// now we are going to set the key for run mode

if (key=='r')

{

g_run=-1;

cout << "Run mode, run =" << g_run << endl;

}

if(key==27)

{

break;

}

return (0);

}

97

Example for video: Moving around #8/23

• The point is to add a global variable that
represents the position of the trackbar.

• After that, we add a callback to inform the
variable and then to relocate the read
position in the video.

• The call that creates the track bar it also
attaches the callback and we are ready to
go.

• It is important to notice that some mpeg and
Avi encodings do not allow us to move
backward in the video.

98

Example for video: Moving around #9/23

• Now we are going to explain the global
variables which is : “int g_dontset=0,
g_run=1;”, “int g_slider_position=0;” and
“cv::VideoCapture g_capture;”.

• To keep the trackbar position state we use
“int g_slider_position=0;”.

• The access that the callback will need to the
capture object we created which is
g_capture is needed to be promoted to a
global variable.

99

Example for video: Moving around

#10/23

• The global variable g_run is displaying

the new frames as long it is different from

zero.

• To indicate how many frames are

displayed before stopping we need a

positive number on the other hand if we

have a negative number the system runs

in continuous video mode.

100

Example for video: Moving around

#11/23

• More analytically If we want to jump to a

new location in the video, we need to

click on the trackbar.

• So we will leave the video paused there

in the single step. To do that we need to

set the g_run =1. Then we are going to

have a little problem.

101

Example for video: Moving around

#12/23

• The problem is while the video advances we also
want the slider trackbar’s position in the display
window to advance due to our location in the video.

• To achieve that we need to have the main program
call the trackbar callback function to keep informing
(updating) the position of the slider every time we
get a new frame.

• Although we don’t want this calls to the trackbar
callback to put us in the single step mode.

• To avoid that we need the g_dontset which is also a
global variable. This variable allows us to get
informed about the trackbar position without
starting the single-step mode.

102

Example for video: Moving around

#13/23

• Now we are going to explain the function
“void onTrackbarSlide(int position, void
*)” which contains the following code: ”
g_capture.set(
cv::CAP_PROP_POS_FRAMES, position);

if(!g_dontsep)

g_run=1;

g_dontset=0; “

103

Example for video: Moving around

#14/23

• We define the callback routine to be used
when we want to slide the trackbar.

• A 32-bit integer will be pass through that
routine and it is going to be the new
trackbar position.

• In this call back we use the newly requested
position in “g_capture.set(
cv::CAP_PROP_POS_FRAMES, position);” to
advance the video playback in the new
position.

104

Example for video: Moving around

#15/23

• We use the if () statement to set the

program into single-step mode right

after the next new frame that comes in.

• This is happening only when the

callback starts by our click and not if the

call was from the main function which

sets the g_dontset.

105

Example for video: Moving around

#16/23

• In the future, we are going to see more often the call
“g_capture.set()” with the counterpart of it which is
“g_capture.get()”.

• With that routines we can configure lots of properties of the
object we created via “cv::VideoCapture g_capture;”.

• We can pass the argument “cv::CAP_PROP_POS_FRAMES”,
which mean that we would like to set the read position in
units of frames.

• When the new video position is requested, it automatically
will handle issues like the possibility that the requested
frame is not actually the key-frame then it will start from the
previous key-frame and it will fast-forward up to the
requested frame without troubling us with the details.

106

Example for video: Moving around

#17/23

• Lets see the next lines: ” int tmph=(int)

g_capture.get(cv::CAP_PROP_FRAME_H

EIGHT);”,” int frames=(int)

g_capture.get(cv::CAP_PROP_FRAME_C

OUNT);”,” int tmpw=(int)

g_capture.get(cv::CAP_PROP_FRAME_W

IDTH);”,” cout << "The video has :" <<

frames << "frames of the dimensions ("

<<tmpw <<","<< tmph <<")."<< endl;” .

107

Example for video: Moving around

#18/23

• To determine the number of frames in

the video and the width and height of the

video images we use the g_capture.get().

• Then with the cout, we print these

numbers.

• To calibrate the slider trackbar in the

next step we will need the number of the

frames in the video.

108

Example for video: Moving around

#19/23

• We create the trackbar itself we use the function
“cv::createTrackbar()“ here is the full line of code: “

cv::createTrackbar("Position",
"video_example2",&g_slider_position,frames,onTrackbarSli
de);”.

• In the first place, we have “Position” is actually the label we
gave to the trackbar.

• Then we specify the window we want to put the trackbar.

• After that, we give the variable that is going to bound to the
trackbar.

• Then we have the number of frames in the video which is
actually the max value of the trackbar.

• At last, we have the callback when the slider is moved it can
also be NULL if we don’t want one.

109

Example for video: Moving around

#20/23

• Now we will explain the following code:
“if(g_run !=0) {g_capture >> frame;
if(frame.empty()) {break;} int
current_position = (int)
g_capture.get(cv::CAP_PROP_POS_FRA
MES);
g_dontsecv::setTrackbarpos("Position","
video_example2", current_position);
c::imshow("video_example2",frame);
g_run=1; } “

110

Example for video: Moving around

#21/23

• This code is in a loop. While we read and display
the video we can also get the current position in
the video.

• We are setting the g_dontset because we want
the next trackbar callback to not put us in single
step mode.

• After that, we will invoke the trackbar callback to
inform the position of the trackbar which had
been displayed to us.

• And last we decrease g_run by 1 because that
will keep us in single mode or it will allow the
video to run depending on its previous state.

111

Example for video: Moving around

#22/23

• Now we will see the last part of our example
which is the key settings.

“char key=(char) cv::waitKey(15); if(key==
't')

{g_run=1; cout<<"Single step, run ="<<
g_run<<endl; } if (key=='r')

{ g_run=-1; cout << "Run mode, run =" <<
g_run << endl;} if(key==27) {break;}”.

112

Example for video: Moving around

#23/23

• In the last code, we told to the program that if we press “t”
from the keyboard we can go into single step mode. Notice
that here we set g_run into 1 which means that will allow
reading of a single frame.

• After that, we told the program that if we press “r” from the
keyboard we will go into continuous video mode. Notice
that we set g_run into -1 and keeps decreasing and that
leaves it negative for any conceivable video size.

• In the last “ if” we say to the program that is we press “Esc”
the program will terminate. Notice that in small programs
we have omitted the cleaning up step if the window storage
with the use of “cv::destroyWindow()”.

113

OpenCV: Video

114

Source file: https://docs.opencv.org/2.4/_images/outputVideoInput.png, last

time visited 5/29/2018.

https://docs.opencv.org/2.4/_images/outputVideoInput.png

Example for transformation (Gaussian)

#1/6

• In this example, we are going to make an
easy operation on the frames of the
video as it plays.

• One easy operation is to make an image
smooth, efficiently will reduce the
information content of the image.

• To succeed that it needs to convolving it
with a Gaussian or other kernel functions
similar to Gaussian.

115

Example for transformation (Gaussian)

#2/6

//In this program firstly we will load

//and then we will smooth an image

// before it;;s displayed on the screen.

// we will use the header file opencv.hpp

//Notice that this header it includes all OpenCV

//functions and is slow to compile.

#include <opencv2/opencv.hpp>

void img_example3(const cv::Mat & image)

{

//we are going to create a few windows

// to show both input and output images in.

cv::nameWindow("img_example3-in", cv::WINDOW_AUTOSIZE);

cv::nameWindow("img_example3-out",cv::WINDOW_AUTOSIZE);

116

Example for transformation (Gaussian)

#3/6

//We will create a window to show

// inpout of the image.

cv::imshow("img_example3",image);

// Now we will create the image to hold

// the smoothed output.

cv::Mat out;

//To do smoothing we could use:

// bliateralFilter(),GausianBlur(); , medianBlur(),blur();

cv::GausianBlur(image, out, cv::Size(5,5),3,3);

cv::GaussianBlur(out,out, cv::Size(5,5),3,3);

// Now in the output window

// we are going to show the smoothed image

cv::imshow("img_example3", out);

CV::waitKey(0);

}

117

Example for transformation (Gaussian)

#4/6

• We will start from the second call since
the first is similar to the previous
example.

• With the next call, we can allocate
another image structure.

• After we create the object we will
instantiate an output matrix, out that will
automatically relocate, resize and
dellocate itself as necessary as it is used.

118

Example for transformation (Gaussian)

#5/6

• Notice that we use consecutive calls to
cv::GaussianBlur().

• In the first call, the image input is blurred
by a convolution filter which is a 5X5
Gaussian and it writes out.

• We should give in odd numbers the size
of the Gaussian kernel, for example,
cv::Size(5,5) which is computed at the
center pixel of that area.

119

Example for transformation (Gaussian)

#6/6

• Out is used in the next call to
cv::GausianBlur() as input and output while
the temporary storage is assigned in this
case for us.

• The result is that we have double- blurred
image displayed.

• The routine after that waits for to push from
a keyboard the input before cleaning up
allocated data and terminating as it goes
out of scope.

120

Example for a complex transformation

(Gaussian) #1/9

• In this example are going to use a function

that uses Gaussian blurring to down-sample

an image.

• Notice that to form a scale space we need to

down-sample the image a few times. This is

also known as an image pyramid. We use

that often in computer vision so we can

handle the scales that are changing in an

object or a scene that is observed.

121

Example for a complex transformation

(Gaussian) #2/9

• According to signal processing and the
Sampling Theorem of Nyquist-Shannon
down-sampling, a signal is equivalent to
convolving with a series of delta functions.
Notice that in our example the signal is the
image that we are sampling every other
pixel.

• That kind of sampling is introducing us high
frequencies into the resulting signal which
in our case it is an image.

122

Example for a complex transformation

(Gaussian) #3/9

• If we want to avoid all of this we need to
run first a high-pass filter over the signal.

• We are doing this to band- limit the
signal’s frequencies to make sure that
they are all bellow the sampling
frequency.

• The function that allows us to do down-
sampling and Gaussian blurring in
OpenCV is: “cv::pyrDown()”.

123

Example for a complex transformation

(Gaussian) #4/9

// In this example we are going to learn cv::pyrDown()

//With this function we are going to create an image

// that is half the height and width of the input image.

//We are going to include the general header file

// of OpenCV which is opencv.hpp.

#include <opencv2/opencv.hpp>

int main(int argc, char ** argv)

{

cv::Mat f_image, s_image;

cv::namedWindow("transformation1",cv::WINDOW_AUTOSIZE);

cv::namedWindow("transformation2", cv::WINDOW_AUTOSIZE);

img= cv::imread(argv[1]);

cv::imshow("traansformation1", f_image);

cv::pyrDown(f_image,s_image);

cv::imshow("transformation2",s_image);

cv::waitKey(0);

return 0;

}

124

Example for a complex transformation

(Gaussian) #5/9

• In the next example of complex

transformation, we are going to see

about Canny edge detector.

• To do that with OpenCV we are going to

use the function “cv::Canny();”.

• The full size of the input image will be

generated by edge detector into an

image.

125

Example for a complex transformation

(Gaussian) #6/9

• To do that we need only a single channel

image to write to.

• To solve this we convert it to a gray-scale

single channel image.

• We are going to use cv::cvtColor() with

flag for converting blue,Green,Red

images to grays-cale,

“cv::COLOR_BRG2GRAY”.

126

Example for a complex transformation

(Gaussian) #7/9

// In this example the canny edge detector

//writes its output to a single channel

//the grey scale.

#include <opencv2/opencv.hpp>

int main (int argc, char** argv)

{

cv::Ma image_rgb, image_gray, image_canny;

cv::nameWindow("Gray", cv::WINDOW_AUTOSIZE);

cv::nameWindow("Canny", cb::WINDOW_AUTOSIZE);

image_rgb=cv::imred(argv[1]);

cv::cvtColor(image_rgb,image_gray,cv::COLOR_BGR2GRAY);

cv::imshow("Gray",image_gray);

cv::Canny(image_gray,image_canny, 10,100,3,true);

cv::imshow("Canny", image_canny);

cv::waitKey(0);

}

127

Example for a complex transformation

(Gaussian) #8/9

• We can combine in a simple image pipeline
both the Canny subroutine and the pyramid
down operator.

cv::cvtColor(image_rgb, image_gray, cv::BGR2GRAY);

cv::pyrDown(image_gray, image_pyr);

cv::pyrDown(image_pyr, image_pyr2);

cv::Canny(image_pyr2 , image_canny, 10, 100, 3, true);

128

Example for a complex transformation

(Gaussian) #9/9

//This example is connecting to the previous example

//and it is made for getting and setting pixels.

int x=15,y=33;

cv::Vec3b intensity =image_rgb.at< cv::Vec3b>(y,x);

uchar blue =intensity[0];

uchar green=intensity[1];

uchar red=intensity[2];

std::cout << "At (x,y)= (" << x<<"," <<y<<"): (RGB)= (" <<(unsigned int)
red<<","<<(unsigned int) green<<","<<(unsigned int) blue<< ")" << std:: endl;

std::cout<<"Greay pixel there is :" <<(unsigned int)image_gray.at<uchar>(y,x)<<std::endl;

x= x/4;

y=y/4;

std::cout <<"Pyramid pixel is :"<<(unsigned int) image_pyr.at<uchar>(y,x)<<std::endl;

// here we set the canny pixel to 128

image_cny.at<uchar>(x,y)=128;

129

Computer vision transformation

130

Source file: http://imagelab.ing.unimore.it/imagelab2015/_images/3dmatching.jpg,

last time visited 5/29/2018.

http://imagelab.ing.unimore.it/imagelab2015/_images/3dmatching.jpg

Example: Input from a camera #1/4

• In the world of computers “VISION”
stands for many things.

• We can analyze frames that are still
which are loaded from elsewhere.

• We also can analyze videos that are
being read by a disk.

• In the most advanced situations, we can
work with real-time data. That data can
be obtained by camera devices.

131

Example: Input from a camera #2/4

• The OpenCV library gives us tools to
handle real-time data from a camera.

• Reading from a disc or a camera can be
done in the same way which is
“cv::VideoCapture object_name”.

• If we want to read from a disk we need to
give the path of the file “Path/filename”, if
we want to read from a camera you give a
camera ID number if have one camera that
is connected to the system we use 0.

132

Example: Input from a camera #3/4

• The value -1 is the default value and

refers to “pick one”.

• This works well when we have only one

camera.

• In this example, we will see how to

capture a video file from a camera or a

file.

133

Example: Input from a camera #4/4

//the object can load videos

// both from a file or a camera.

#include <iostream>

#include<opencv2/opencv.hpp>

int main(int argc , char** argv)

{ cv::nameWindow("Capture_camera", cv::WINDOW_AUTOSIZE);

cv::VideoCapture capture;

//open the camera

if(argc==1)

{ capture.open(0); }

else

{ capture.open(argv[1]); }

// cheack the success

if(!capture.isOpened())

{ std::cerr<< "Failed to open capature."<< std::endl;

return -1; }

// this is the main core of the program

...

}

134

Example: How to write to an Avi file #1/4

• We write videos in Avi files because we want to
record the streaming output or disparate
captured images to an output video stream.

• We can create a capture device that allows us to
grab frames from a video stream once at a time.

• We can also create a writer device that will allow
us to place frames in a video. The object we are
going to use is: “cv::VideoWriter” and finally we
use the “cv::VideoWriter.release()” method.

135

Example: How to write to an Avi file #2/4

//In this program we are going to read

//a color in the video and

//write out the lo-polar- transformed video.

#include <iostream>

#include <opencv2/opencv.hpp>

int main(int argc, char* argv[])

{

cv::namedWindow("Example_avi", cv::WINDOW_AUTOSIZE);

cv::namedWindow("Log_polar", cv::WINDOW_AUTOSIZE);

//if we want to use a camera to capture

// we must give a camera id which must be declared as integer(int).

cv::VideoCapture capture(argv[1]);

double fps=caprure.get(cv::CAP_PROP_FPS);

cv::Size size((int)capture.get(cv::CAP_PROP_FRAME_WIDTH),

(int) capture.get(cv::CAP_PROP_FRAME_HEIGHT));

cv::VideoWriter writer;

writer.open(argv[2], CV_FOURCC('M','J','P','G'), fps ,size);

cv::Mat logpolar_frame, bgr_frame;

136

Example: How to write to an Avi file #3/4

for(;;)

{

capture >> bgr_frame;

if(bgr_frame.empty())

{break;}

cv::imshow("Example_avi",bgr_frame);

//1.inpute color frame 2. output log-polar frame 3.centerpoint

//for transformation of log-polar 4.x 5.y 6.scale parameter Magnitude

//7. Fill outliers with 0.

cv::logpolar(bgr_frame,logpolar_frame,cv::Point2f(bgr_frame.cols/2,

bgr_frame.rows/2),40,cv::WARP_FILL_OUTLIERS);

cv::imshow("Log_polar",logpolar_frame);

writer<<logpolar_frame;

char key= cv::waitKey(10);

if(key==27) //27=Esc

{break;}

}

capture.release();

}

137

Example: How to write to an Avi file #4/4

• In this program, we opened a video and
read some properties of it such us frames
per second, the height and the width of an
image.

• Then we read frame by frame the video
from “cv::VideoReader object”.

• We convert the frame to log-polar format.

• We write the long- polar frames to a new
video file one at a time till the user quits by
pressing Esc or till none left to write.

138

OpenCV basics with python: Reading and

writing an image file #1/5

• In python we have the following OpenCV

functions: “imread()” and “imwrite()”.

• This functions supports various formats

of still images.

• In many systems, the formats may vary

but all the systems have a standard

format that format is BMP.

139

OpenCV basics with python: Reading and

writing an image file #2/5

• To use OpenCV functions in python we

need to import cv2.

import cv2

image= cv2.imread('image1.png')

cv2.imwrite('image1.jpg',image)

140

OpenCV basics with python: Reading and

writing an image file #3/5

• The imread() function returns an image

in Blue Green Red(BGR) color format.

Notice that if the file uses a grayscale

format it will do the same function.

• The color that BGR represents is the

same with RGB (Red Green Blue) the

only difference is that the byte order is

reversed.

141

OpenCV basics with python: Reading and

writing an image file #4/5

• In imread() we can specify the mode we
want to use so it can be :
CV_LOAD_IMAGE_COLOR for BGR,
CV_LOAD_IMAGE_GRAYSCALE for
grayscale and
CV_LOAD_IMAGE_UNCHANGED.

• It does not matter the mode we have
because imread() discards any alpha
channel (transparency).

142

OpenCV basics with python: Reading and

writing an image file #5/5

• The imwrite() function needs an image to be in
grayscale or BGR format with a number of bits for
each channel that the output format supports.

#Notice that a bmp image requires 8bits per channel

#png requiews 8 or 16 bits per channel

import cv2

grayimage=cb2.imread('image2.png',
cv2.CV_LOAD_IMAGE_GRAYSCALE)

cv2.imwrite('iamge2gray.png', grayimage)

143

OpenCV basics with python: converting

between raw bytes and image #1/6

Generally, we know that a byte is an

integer and its range is from 0 to 255. In

the real-time graphics applications, a

pixel is represented by one byte per

channel but there are other

representations which are possible too.

144

OpenCV basics with python: converting

between raw bytes and image #2/6

• Actually when we talk about an OpenCV
image we refer to 2D or 3D array and the
type of it is numpy.array.

• For example, an 8-bit grayscale image is
actually a 2D array that contains byte
values.

• Another example is a 24-bit BGR image
which is a 3D array that also contains byte
values.

145

OpenCV basics with python: converting

between raw bytes and image #3/6

• To access that values we use expressions

such as image[0,0,0] or image[0,0].

• In the first index, we have the y coordinate

or row 0 which is being on the top.

• As for the second is the x coordinate or

column 0 which is being left most.

• If we have a third index it will represent the

color channel.

146

OpenCV basics with python: converting

between raw bytes and image #4/6

• Example: if we have an 8-bit grayscale image
with a white pixel in the upper left corner we will
have image[0,0] which is 255.

• On the other hand for a 24-bit BGR image with a
blue pixel image[0,0] is [255,0,0].

• An alternative way to express image[0,0]=128 in
python is image.setitem((0,0),128). We use the
second method mostly to a single pixel
operation.

147

OpenCV basics with python: converting

between raw bytes and image #5/6

• We can cast an image that has 8 bit per channel to a
standard python “byteArray”, this is one-
dimensional and it will be like this: “byteArray =
bytearray(image) “.

• The “byteArray” has bytes in a specific order.

• After we cast then we reshape it to get a
“numpy.array”. Here is how it will go : “grayImage =
numpy.array(grayByteArray).reshape(height, width)
“, “bgrImage =
numpy.array(bgrByteArray).reshape(height, width,
3)”.

148

OpenCV basics with python: converting

between raw bytes and image #6/6

#convert bytearray

#This script creates a pair of randomly

#generated images ins script's directory

import os

import numpy

import cv2

#os.urandom() is a function that generates random raw bytes

#we then covert them to numpy array using reshape.

randomByteArray=byteArray(os.urandom(120000))

flatNumpyArray = numpy.array(randomByteArray)

#To make a 400X300 grayscale image

#we need to convert the array.

grayImage=flatNumpyArray.reshape(300,400)

cv2.imwrite('RandomGray.png',grayImage)

#now we are going to do the same for a color image 400X100

bgrImage=flatNumpyArray.reshape(100,400,3)

cv2.imwrite('RandomColor.png', bgrImage)

149

OpenCV basics with python: Reading and

writing a video file #1/3

• In python, OpenCV has classes that support
various video file formats. That class is:
“VideoCapture” and “VideoWriter”.

• The supported formats vary in every
system but all of them should always
include AVI.

• In VideoCapture class we have the method
“read()”. This method may be polled for
new frames until reaching the end of the
video file.

150

OpenCV basics with python: Reading and

writing a video file #2/3

• In the class VideoWriter, we have the

method “write()” that appends the image to

the file in the VideoWriter.

• We need to be cautious with the arguments

in VideoWriter class constructor.

• The file name of the video must be

specified because any preexisting with the

same name will be overwritten.

• Notice that we must specify the codec too.

151

OpenCV basics with python: Reading and

writing a video file #3/3

#In this Script we will

#read frames from an Avi file

#then it writes them to another

#avi file with YUV encoding.

import cv2

videoCapture=cv2.VideoCapture('Inputvideo.avi')

fps=videoCapture.get(cv2.cv.CV_CAP_PROP_FPS)

size=(int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)),

int(videoCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))

videoWriter=cv2.VideoWriter('Outputvideo.avi',cv2.cv.CV_FOURCC('I','4','2','0'),fps,size)

succsess,frame=videoCapture.read()

#This Loop goes till there are no frames left.

while success:

videoWirter.write(frame)

succsess,frame=videoCapture.read()

152

OpenCV basics with python: Capturing

camera frames #1/5

It is the same as reading and writing

from a file the only difference is that we

need to pass the video camera’s index

instead of a video file name.

153

OpenCV basics with python: Capturing

camera frames #2/5

#capturing camera frames

import cv2

cameraCapture=cv2.VideoCapture(0)

fps =30

size=(int(cameraCapture.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH),

int(cameraCapture.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)))

videoWriter =
cv2.VideoWriter('Ourputvideo.avi'cv2.cv.CV_FOURCC('I','4','2','0'),fps,size)

success, frame= cameraCapture.read()

numFramesRemaining=10 *fps-1

while success and numFramesRemaining>0:

videoWriter.write(frame)

success, frame = cameraCapture.read()

numFramesRemaining -=1

154

OpenCV basics with python: Capturing

camera frames #3/5

• The get() method does not return an

accurate value for the camera’s frame

rate it returns always 0.

• We need to make an assumption about

the frame rate or measure it using a

camera. If we do that we will create an

appropriate VideoWriter class for the

camera.

155

OpenCV basics with python: Capturing

camera frames #4/5

• OpenCV does not provide any way of

querying the number of the cameras or

the properties of the cameras.

• If we are going to construct a

VideoCapture class with an invalid index

it will not yield any frames and the read()

method will return (false, none).

156

OpenCV basics with python: Capturing

camera frames #5/5

• To synchronize a set of cameras or a multi-head camera we use the methods
grab() and retrieve().

#for a set of cameras we use

success0 = cameraCapture0.grab()

success1 = cameraCapture1.grab()

if success0 and success1:

frame0 = cameraCapture0.retrieve()

frame1 = cameraCapture1.retrieve()

#For a multi head camera we use

success = multiHeadCameraCapture.grab()

if success:

frame0 = multiHeadCameraCapture.retrieve(channel = 0)

frame1 = multiHeadCameraCapture.retrieve(channel = 1)

157

OpenCV basics with python: Displaying

camera frames in a window #1/2

• In this example we will see how:

1. To name a window

2. To create and redrawn

3. To destroy a Window

4. Mouse input

158

OpenCV basics with python: Displaying

camera frames in a window #2/2

import cv2

clicked=False

def onMouse(event,x,y,flags, param);

global clicked

if event == cv2.cv.CV_EVENT_LBUTTONUP:

clicked =True

cameraCapture = cv2.VideoCapture(0)

cv2.namedWindow('Example')

cv2.setMouseCallback('Example', onMouse)

print 'Showing camera feed. Click on the window or press any key to stop.'

success,frame =cameraCapture.read()

while success and cv2.waitKey(1) == -1 and not clicked:

cv2.imshow('Example',frame)

success,frame =cameraCapture.read()

cv2.destroyWindow('Example')

159

Module B

In this lecture we will see some advanced

topics of OpenCV, more specifically we

are going to see:

• Feature extraction

• Background subtraction

• Object Detection

160

Feature extraction #1/11

• There is an image pattern that is helping
us to describe what we see in the image
this image pattern we call it “Image
feature”.

• For example, if we have an image of a cat
it’s feature could be the cat eye.

• In computer vision, the features are used
for transforming visual information into
the vector space.

161

Feature extraction #2/11

• Transforming a visual information to the
vector space is allowing us to perform
mathematical operations on them.

• This gives us a way to find similarities
between images or objects on the
images.

• To do that actions there are two ways first
way is with neural nets and the second is
image descriptors.

162

Feature extraction #3/11

• There are plenty algorithms for feature
extraction, most of that algorithms are
based on image gradient. Some of the
most popular algorithms for feature
extraction are :

• ORB

• SIFT

• BRIEF

• SURF

• In this presentation, we will say a few
things only about SURF.

163

Feature extraction #4/11

• The Speeded –Up Robust Features (SURF)
we can say that is the evolution of SIFT
feature.

• SURF originally proposed by Bay et al in
2006.

• The goal of SURF creators was to replace
SIFT features with more computationally
efficient techniques that could give similar
or better performance in primarily
recognition tasks.

164

Feature extraction #5/11

• Indeed the result was not only faster to
compute but also in many cases the simpler
nature results in greater robustness to
change in operation or lightning that is
observed with SIFT features.

• The SURF feature is depended on
computations that can be greatly
accelerated.

• The technique we use for that purpose is
“Integral image technique”.

165

Feature extraction #6/11

• In SURF we need to define a key point in
terms of the local Hessian at a given
point.

• Hessian is a matrix of second- order
derivatives.

• The best implementation of SURF in
OpenCV is using cv::Feature2D interface
we re going to see an example in C++.

166

Feature extraction #7/11

class cv::xfeatures2d::SURF : public cv::Feature2D{

static Ptr<SURF> create (

double hessianThreshold=100,

// This is the number of pyramid octaves

int n0ctaves =4,

//This is the number of images in each octave

int n0ctaveLayers=3,

//false: 64-element, true : 128-element descriptors

bool extented = fasle ,

//true : do not compute orientations .W/out is much faster.

bool upright = false);

// descriptor size 128 or 64

int descriptorSize() const;

// type od the descriptor CV_32F

int descriptorType() const;

...

};

typedef SURF SurfFeatureDetector;

typedef SURF SurfDescriporExtractor;

167

Feature extraction #8/11

• In the cv::xfeatures2d::SURF : object the
constructor method create() has 5
arguments.

• The first argument “hessianThreshold” sets
the value of the threshold for the
determinant of the Hessian that is needed
as a local extremum to be considered as
key-point.

• A typical value for the constructor is 1500
but we assigned the constructor’s value by
default 100.

168

Feature extraction #9/11

• The extended parameter is telling the
feature extractor to use the extended
feature set.

• The parameter upright indicates that
orientations should be treated as “vertical”
we also can call that “U-SURF”.

• The final arguments n0ctaves and
n0ctaveLayers are analogous to
corresponding arguments for
“cv::xfeatures2d::SIFT()”.

169

Feature extraction #10/11

• The n0ctaves argument determines the

number of doublings of scale that will be

searched for key points.

• For each octave, a few kernels will be

evaluated.

• The default value for n0ctaveLayers is 3

but in new research has proved that it is

increasing it to 4.

170

Feature extraction #11/11

• The descriptorSize() and
descriptorType() methods are returning
the numbers of elements in descriptor
vector and the type of the descriptor
vector.

• Some extra functions of
“cv::xfeatures2d::SURF” are methods that
set and retrieves the parameters of the
algorithm on the fly.

171

Background subtraction #1/7

• Background subtraction is a key image-
processing operation for many applications
mostly for video security.

• If we want to perform background
subtraction we need to learn a model of the
background.

• This model is compared to the current
image and then the background parts are
subtracted away. That objects are
presumably new foreground objects.

172

Background subtraction #2/7

• For simple scenes, the background
modeling methods are suffering from an
assumption which is often violated: that
the behavior of every pixel in the image
is statistically independent of the
behavior of others.

• A solution to make the surrounding
pixels into account we need to learn a
model which is multipart.

173

Background subtraction #3/7

• To define background and foreground we
need a high-level scene in which we define
multiple levels between foreground and
background states.

• Also, we need a timing-based method of
slowly relegating unmoving foreground
patches to background patches.

• Finally, we have to detect and create a new
model when we have a global change in the
scene.

174

Background subtraction #4/7

• A simple background subtraction

method is that subtracts one frame from

another and then label any difference

that is big enough in the foreground.

• We create a process that tends to catch

the edges of moving objects.

175

Background subtraction #5/7

An example: if we have three single-

channel images: frametime1, frametime2,

and foreground. The image with

frametime1 is filled with an older

grayscale image and frametime2 with the

current grayscale image.

176

Background subtraction #6/7

• In the following code, we are going to
detect the absolute value of foreground
differences in frameForeground.

cv::absdiff(

//It is the first input array.

frametime1,

//It is the second input array

frametime2,

//It is the result array.

frameForeground);

177

Background subtraction #7/7

• Pixel values every time exhibit fluctuations and noise so we
need to ignore set “set to 0’ small differences “say, less than
15” and then mark the rest as big differences “set to 255”.

cv::threshold(

//input image

frameForefround,

//result image

frameForefround,

//threshold value

15,

//max value for upward operations

255,

//Type of threshold to use

cv::THRESH_BINARY

);

178

Object Detection #1/11

• Object Detection is a process that

determines if an image contains any

particular object also the localization of

the object we want to find in pixel space.

• We will see some methods, which is

helping us to detect objects.

179

Object Detection #2/11

• The first method is called “ Cascade
classifier”.

• This method generalizes the “Viola and
Jones” algorithm, for face detection.

• The second method is called “Soft
cascade”.

• This evolved algorithm uses a more
robust classification than the “ Cascade
classifier”.

180

Object Detection #3/11

• These methods can be used for object
detection not only for faces but for other
object classes too.

• In conclusion objects with rich texture and
grid structure are well respond in these
methods.

• Notice that these methods involve other
stages that inset an input learning or post-
process the input of “The learning
algorithm”.

181

Object Detection #4/11

• The cascade classifier is a tree-based
technique. This technique was built on a
concept, the name of the name of that
concept is “boosted rejection cascade”.

• A technique for face detection first
developed by “Paul Viola and Michael
Jones”.

• That technique is known as the “Viola-
Jones detector”.

182

Object Detection #5/11

• The Viola-Jones detector operates in two
layers.

• We call the first layer “feature detector”.
In this layer, we encapsulate and
modularize the feature computation.

• In the last layer we have the cascade
boosted. It uses differences and sums
over rectangular regions of the
computed features.

183

Object Detection #6/11

• By default, the classifier uses Haar-like

features. Haar wavelet is the first known

wavelet basis and it was proposed by

Alfred Haar in 1909.

• There are two feature sets supported.

These sets include both the Haar wavelet

features and the alternative feature

“LBP”.

184

Object Detection #7/11

• Now we are going to give an example of

face detection. We will use

detectAnddraw() to detect faces and draw

their locations in different – colored

rectangles on the image.

• In this example notice that a previously

trained classifier cascade has been loaded.

• In the end, the memory for detected faces is

going to be created.

185

Object Detection #8/11

//In this example we are going

//to detect and draw faces

// faces are the objects we detect in this example.

#include <opencv2/opencv.hpp>

#include <fstream>

#include <iostream>

//input image, preload classifier, resize image by ..

void detectAndDraw(cv::Mat image, cv::Ptr<cv::CascadeClassifier> classifier, double scale=1.3)

{ enum {CYAN,BLUE,AQUA, GREEN};

static cv::Scalar colors[]=

{

cv::Scalar(0,255,255),

cv::Scalar(0,0,255),

cv::Scalar(0,128,255),

cv::Scalar(0,255,0),

};

186

Object Detection #9/11

//Preparation of the image

cv::Mat gray(image.size(),CV_8UC1);

cv::May small_img(cvSize(cvRound(image.cols/scale),

cvRound(image.rows/scale)),CV_8UC1);

cv::cvtcolor(image,gray,cv::BGR2GRAY);

cv::resize(gray, small_img, cv::INTER_LINEAR);

cv:: equalizeHist(small_img,small_img);

//This is how we detect objects is there are any.

vector<cv::Rect> objects;

// 1) The image we input, 2)variable for the resu;ts, 3) scalefactor,

//4) the min number of neighbors, 5) An old format for cascades only

//6) Throw away detections smaller than this.

classifier ->

detectMultiScale(small_img,objects,1.1,2,cv::HAAR_DO_CANNY_PRUNING,cv::Size(30,30);

//Found and draw

for (vector <cv::rect>:: iterator r=objects.begin(); r!=objects.end; ++r)

{

Rect r_ =(*r)*scale;

cv:: rectangle(image,r_,colors[i%4]);

}

}
187

Object Detection #10/11

• In this program the detectAndDraw()

function has a static vector of colors

colors[].

• These colors are allowed to be indexed to

draw the faces we found in deferent colors.

• Since this classifier works on grayscale

images, we need to convert the BGR image

into grayscale via “cv::cvtColor()”, after that

optionally resized via “cv::resize()”.

188

Object Detection #11/11

• After that, we have histogram equalization via
“cv::equalizeHist()”, which speeds out the values
of brightness.

• This is important because the integral image
features are based on differences of rectangle
regions this means that if the histogram is not
balanced, the differences might be skewed by
overall lighting or exposure of the test images.

• The real object detection is taking place above
the loop and the loop steps into the found object
rectangle regions and then draws them with the
colors we declare using the “cv::rectangle()”.

189

Face Detection

190

Source file: https://d3l69s690g8302.cloudfront.net/wp-

content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg, last

time visited 5/29/2018.

https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg
https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg
https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg
https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg
https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg
https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg
https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg
https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg
https://d3l69s690g8302.cloudfront.net/wp-content/uploads/2016/11/18123046/google-glass-facial-recognition.jpg

Conclusion

OpenCV can be used in various domains
such as medicine, robotics, secure systems
and much more. It is essential to say that it

has great capability with Windows and
Linux. You can start from the basics and

then move to more advance subjects. In this
presentation we made a simple reference
about computer vision and OpenCV. If you

are willing to learn more about you can
check the sources of this presentations to

find more materials to study.

191

Sources

• Computer vision From Wikipedia, the free encyclopedia:
https://en.wikipedia.org/wiki/Computer_vision, last time visited on 5/12/2018.

• BOOK: Learning OpenCV 3 COMPUTER VISION in C++ WITH THE OPENCV
LIBRARY by Adrian Kaehler & Gary Bradski.

• Computer vision from Osprey Informatics:
http://www.ospreyinformatics.com/computer-vision/ , last time visited on
5/12/2018.

• MASARYK UNIVERSITY FACULTY OF INFORMATICS, Event Detection in video ,
from Master’s Thesis Filip Nálepa : https://is.muni.cz/th/359760/fi_m/thesis.pdf,
last time visited on 5/12/2018.

• OpenCV From Wikipedia, the free encyclopedia:
https://en.wikipedia.org/wiki/OpenCV , last time visited on 5/12/2018.

• BOOK: Joseph Howse - OpenCV Computer Vision with Python – 2013

• Feature extraction and similar image search with OpenCV for newbies, Author
Andrey Nikishaev : https://medium.com/machine-learning-world/feature-
extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774 , last
time visited on 5/12/2018.

• Learn OpenCV ubuntu installation: https://www.learnopencv.com/install-
opencv3-on-ubuntu/, last time visited on 5/12/2018.

192

https://en.wikipedia.org/wiki/Computer_vision
http://www.ospreyinformatics.com/computer-vision/
http://www.ospreyinformatics.com/computer-vision/
http://www.ospreyinformatics.com/computer-vision/
https://is.muni.cz/th/359760/fi_m/thesis.pdf
https://en.wikipedia.org/wiki/OpenCV
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://medium.com/machine-learning-world/feature-extraction-and-similar-image-search-with-opencv-for-newbies-3c59796bf774
https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-ubuntu/

